

Release: January the 16th, 2017

SEcube™ Development Kit

L2 User Manual

Proprietary Notice

The following document offers information, which is subject to the terms and conditions de-

scribed hereafter.

While care has been taken in preparing this document, some typographical errors, error or

omissions may have occurred. We reserve the right to make changes to the content and in-

formation described herein or update such information at any time without notice. The

opinion expressed are in good faith and while every care has been taken in preparing this

document, some typographical errors, error or omissions may have occurred. We reserve

the right to make changes to the content and information described herein or update such

information at any time without notice. The opinion expressed are in good faith and while

every care has been taken in preparing this document.

Authors
Giuseppe AIRÒ FARULLA (CINI Cyber Security National Lab) giuseppe.airofarulla@polito.it

Alberto CARELLI (CINI Cyber Security National Lab) alberto.carelli@polito.it

Nicola FERRI

Paolo PRINETTO (President, CINI) paolo.prinetto@polito.it

Giulio SCALIA

Giorgia SOMMA (Business Development Manager, Blu5 Labs Ltd) giorgia.somma@blu5labs.eu

Antonio VARRIALE (Managing Director, Blu5 Labs Ltd) av@blu5labs.eu

Acknowledgment

Authors would like to thank the following persons for their valuable support:

Frederik GOSSEN

Pascal TROTTA

The present work has been partially supported by CISCO and developed within the Project

“FilieraSicura: Securing the Supply Chain of Domestic Critical Infrastructures from Cyber At-

tacks”.

Trademarks

Words and logos marked with ® or ™ are registered trademarks or trademarks owned by

Blu5 View Pte Ltd. Other brands and names mentioned herein may be the trademarks of

their respective owners. No use of these may be made for any purpose whatsoever without

the prior written authorization of the owner company.

mailto:giuseppe.airofarulla@polito.it
mailto:alberto.carelli@polito.it
mailto:paolo.prinetto@polito.it
mailto:giorgia.somma@blu5labs.eu
mailto:av@blu5labs.eu

SEcube™ Development Kit - Getting Started Page 4 of 48
Document Title: SEcube™ Development Kit – L2 User Manual Release: 001
Document Classification: Private

Disclaimer
THIS DOCUMENT AND THE INFORMATION CONTAINED HEREIN IS PROVIDED ON AN “AS IS”

BASIS AND ITS AUTHORS DISCLAIM ALL WARRANTIES, EXPRESS, OR IMPLIED, INCLUDING

BUT NOT LIMITED TO ANY WARRANTY TAHT THE USE OF THE INFORMATION HEREIN WILL

NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OR MERCHANTABILITY OR FIT-

NESS FOR A PURPOSE.
THE SOFTWARE IS PROVIDED TO YOU “AS IS” AND WE MAKE NO EXPRESS OR IMPLIED WAR-

RANTIES WHATSOEVER WITH RESPECT TO ITS FUNCTIONALITY, OPERABILITY, OR USE, IN-

CLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FIT-

NESS FOR A PURPOSE, OR INFRINGEMENT. WE EXPRESSLY DISCLAIM ANY LIABILITY WHAT-

SOEVER FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, INCIDENTAL OR SPECIAL DAMAGES,

INCLUDING, WITHOUT LIMITATION, LOSS REVENUES, LOST PROFITS, LOSSES RESULTING

FROM BUSINESS INTERRUPTION OR LOSS OF DATA, REGARDLESS OF THE FORM OF ACTION

OR LEGAL THEREUNDER WHICH THE LIABILITY MAY BE ASSERTED, EVEN IF ADVISED OF THE

POSSIBILITY LIKELIHOOD OF SUCH DAMAGES

SEcube™ Development Kit - Getting Started Page 5 of 48
Document Title: SEcube™ Development Kit – L2 User Manual Release: 001
Document Classification: Private

Table of content

1. Introduction 7

2. The L2 Security APIs 8
2.1. The Purpose 8
2.2. Functionalities Offered 9

3. SEfile 9
3.1. Data Confidentiality 12

3.1.1. Encryption Algorithm 12
3.2. Data authentication 14

3.2.1. Algorithms 14
3.3. Running the Provided Demo 16

3.3.1. Secure Text Editor and Secure Image Viewer 16
3.3.2. SQLite and DB browser for SQLite 17

3.3.3. The SQLite APIs Commented 18

4. SElink 23
4.1. SElink driver 23
4.2. SElink service 25
4.3. SElink service 27
4.4. Running the Provided Demo 31

4.4.1. Requirements 31
4.4.2. The Client Software 31
4.4.3. Server side 33
4.4.4. Advanced configuration 35

4.4.5. The APIs Commented 37

APPENDIX A - SEfile APIs 39
APPENDIX B - SElink APIs 46

SEcube™ Development Kit - Getting Started Page 6 of 48
Document Title: SEcube™ Development Kit – L2 User Manual Release: 001
Document Classification: Private

1. Introduction

The SEcube™ (Secure Environment cube) Open Security Platform is an open source security-
oriented hardware and software platform, designed and constructed with ease of integra-
tion and service-orientation in mind.

The hardware part of the platform was originally designed by Blu5 Group1, whereas the
software libraries stem from a strong cooperation among five international research institu-
tions, including:

 Blu5 Labs Ltd, Blu5 Group, Ta Xbiex, Malta –
Reference: Antonio VARRIALE, av@blu5labs.eu

 CINI Cyber Security National Lab, Torino, Italy –
Reference: Paolo PRINETTO, paolo.prinetto@polito.it

 Lero, The Irish Software Research Centre, University of Limerick, Limerick, Ireland –
Reference: Tiziana MARGARIA, tiziana.margaria@lero.ie

 LIRMM, CNRS, Montpellier, France –
Reference: Giorgio DI NATALE, giorgio.dinatale@lirmm.fr

 TU Dortmund, Dortmund, Germany –
Reference: Bernard STEFFEN, bernhard.steffen@tu-do.de

The level L2 of the security APIs and its functionalities are presented in Section 2.

Functionalities offered from level L2 are conceptually grouped into two main projects: SEfile,
detailed in Section 3, and SElink, detailed in Section 4.

The software libraries, in conjunction with the above-mentioned design environment, allow
developers who are not willing or able to produce the security APIs and protocols them-
selves to exploit the ready functions provided (currently as APIs and soon as services) within
the SEcube™ platform and experience the platform as a high-security black box. Conversely,
security experts can enjoy the openness and good documentation to verify, change or re-
write the pre-existing software, starting from basic low-level blocks or even redefine entirely
the whole system.

All the software is released in source code under GPLv3 license2.

Leveraging the platform thought, we intend to create and nurture over time a community
for developers at the different levels of security competence and in different application
domains. This will ease sharing project, knowledge, and resource and provide the collectivity
of members with specialized support tailored to their needs.

1 www.blu5group.com
2 https://www.gnu.org/licenses/gpl-3.0.en.html

mailto:av@blu5labs.eu
mailto:paolo.prinetto@polito.it
mailto:tiziana.margaria@lero.ie
mailto:giorgio.dinatale@lirmm.fr
mailto:bernhard.steffen@tu-do.de
http://www.blu5group.com/

SEcube™ Development Kit - Getting Started Page 7 of 48
Document Title: SEcube™ Development Kit – L2 User Manual Release: 001
Document Classification: Private

2. The L2 Security APIs

The SEcube™ Hardware device family comprises 3 major members, which are detailed in the
“Getting Started” manual (please refer to Chapter 2):

 The Chip, named SEcube™ Chip, or simply SEcube™

 The Development Board, named SEcube™ DevKit

 The USB Stick, named USEcube™ Stick.

The functionalities of these devices can be expressed leveraging the SEcube™ Open Source
Software Libraries, then hereinafter referred to as the SEcube™ SDK, introduced in the “Get-
ting Started” manual (please refer to Chapter 5).

The SEcube™ SDK consists in a set of multi-level and open source C libraries, collectively re-
ferred to as APIs in the sequel.

From the user/developer point of view, the APIs have been implemented targeting two
nested environments depending on where physically the code runs:

 Device-Side, including the libraries of basic functionalities that are executed on the
embedded processor of the SEcube™-based hardware device

 Host-Side, containing libraries of functions executed on the host PC and interface
functions for calling services and processes residing on the embedded processor of
the SEcube™ device.

On the Host-Side, where the software is tailored for existing devices (e.g., laptops or Desktop
PC) that see the SEcube™ hardware as an external peripheral which exposes services de-
scribed in the “Getting Started” manual (section 5.2).

The SEcube™ device is thus seen by the host as a closed black box providing services. The
host starts the service request by sending the related command and the optional data pack-
ets, through a proper interface, per a custom protocol.

The Host-Side Libraries are designed to be scalable, i.e., for dealing with multiple devices,
and portable on different Operating Systems, thus limiting the usage of and isolating plat-
form-dependent modules. They practically run on top of the host OS, directly relying on the
OS System calls. To improve portability and migrations, the libraries are organized in such a
way that all the OS-dependent sub-modules (e.g., communication interface, file system, etc.)
be easily identifiable.

From the architectural point of view, the Host-Side Libraries have been implemented target-
ing 4 hierarchical abstraction levels, and namely:

 Communication Protocol and Provisioning APIs (Level0 Host-Side – L0)

 Basic Security APIs (Level1 Host-Side – L1)

 Intermediate Security APIs (Level2 – L2)

 Advanced Security APIs (Level3 – L3).

SEcube™ Development Kit - Getting Started Page 8 of 48
Document Title: SEcube™ Development Kit – L2 User Manual Release: 001
Document Classification: Private

From the architectural point of view, the libraries have been implemented targeting hierar-
chical abstraction levels.

At each level, each component represents a “service” for the upper level and relies on “ser-
vices” provided by the next lower level, only.

This document focuses on the Host-Side only, and particularly on the Intermediate Security
APIs (Level2 – hereinafter referred to as L2).

2.1. The Purpose

Level L2 relies on L1 services to provide the APIs for implementing more abstract secure
functionalities (Figure 1). Typical examples include APIs for the protection of data both at-
rest and in-motion, or negotiating parameters (e.g., keys, algorithms) for establishing secure
sessions, without being forced to understand in details all the low-level hardware and secu-
rity mechanisms.

Level L2 exploits principally the following functionalities provided from Level L1 and L0:

 Secure key storage: cryptographic keys of custom length can be stored inside the
device

 Encryption and decryption of data stream: using any of the stored keys

 Authentication of data streams: using any of the stored keys.

In addition, L2 is an abstraction layer that could be easily used for developing new applica-
tions (Level L3) on top of it.

Figure 1 – L2 Services

SEcube™ Development Kit - Getting Started Page 9 of 48
Document Title: SEcube™ Development Kit – L2 User Manual Release: 001
Document Classification: Private

2.2. Functionalities Offered

While developing the APIs for the L2 level, it has been chosen to include the secure layer in
the user space domain, so that it can be directly used by any application programs leverag-
ing to the developed custom functions. Given that, a set of dedicated wrappers have been
developed to substitute system calls, especially for what concerns accessing the File System
and the network interfaces manager.

The basic principle is that any application using the provided API instead of the standard sys-
tem calls can create and manage entities that are protected (i.e., authenticated and confi-
dential) in all its parts. This is true both for data intended to be stored on a physical support
(i.e., data at rest), which are cyphered and signed up to their name, and data package to be
sent over an insecure network channel (i.e., data at motion), which are hidden from mali-
cious attackers up to their transport-layer header.

Contemporaneously, both the encryption-decryption and the authentication processes are
totally transparent to the user/application, which still work in terms of regular files or net-
work packages.

Conceptually, APIs belonging to the L2 abstraction layer expose functionalities needed for
any user who wants, by moving inside a secure environment, to perform basic operation on
regular files and network packages. The concept of a secure environment reflects the need
of providing a simple mechanism to allow the user to customize the parameters of the se-
cure session, by configuring the keys to be used and the algorithms to be enforced through
all the valid life of the session itself.

APIs belonging to the L2 currently aim at easing the development of secure applications
managing data at rest, i.e., data meant to be stored on untrusted physical supports, and da-
ta at motion, i.e., data meant to be sent on untrusted network channels after the establish-
ment of a shared secure session. Given that, L2 is identified as the merge of two projects:
SEfile, concerning data at rest, and SElink, concerning instead data at motion.

SEcube™ Development Kit - Getting Started Page 10 of 48
Document Title: SEcube™ Development Kit – L2 User Manual Release: 001
Document Classification: Private

3. SEfile

Any OS provides an abstraction layer in its kernel space, used to separate file system generic
operations from their implementation. This is performed by defining a clean Virtual File Sys-
tem (VFS) interface. Several implementations for the VFS interface may coexist on the same
machine, allowing transparent access to different types of file systems mounted locally. Data
protection is provided at this level of abstraction, by means of a dedicated security engine,
hereinafter referred to as secure layer.

One approach is to develop a secure layer which operates in user space (Figure 2 on the
left). This approach allows the developer to provide security functionalities without modify-
ing the underlying operating system, which it is not always permitted. On the other hand,
those secure functions do not override the standard ones, instead proposing themselves as
a secure alternative. An interesting feature in this case is given by the possibility to develop
a portable layer, meaning that it is valid for different Operating Systems (OSs).

Typically, OSs vendors follow instead another approach, based on a security level lying under
the virtual file system, hence not guaranteeing portability (Figure 2 on the right). The secure
layer, in this case, is transparent to the application/user.

In any case, whichever is the chosen approach, malicious user, or software, still may exploit
existing flaws in the application accessing to the secure layer or even in the secure layer it-
self. A countermeasure to protect effectively data, thus, resorts to hardware key manage-
ment techniques applied to powerful embedded systems that can perform complex crypto-
graphic operations while, at the same time, increasing the confidence of data security. A se-
cure device can guarantee data protection also when the host machine is compromised.

SEfile is a file system which exploits the hardware key management exposed from APIs Level
L1 and other functionalities from the SEcube™ device (Figure 3). It has been developed hav-
ing in mind the needs to ensure both simplicity of usage and security for data at rest: it al-
lows secure storage, retrieve and usage of information that could not be trusted if stored
elsewhere, e.g., any personal computer, or cloud service provider.

Figure 2 - Secure Layer and Virtual File System: two different approaches

SEcube™ Development Kit - Getting Started Page 11 of 48
Document Title: SEcube™ Development Kit – L2 User Manual Release: 001
Document Classification: Private

Figure 3 – SEfile hierarchic organization

Conceptually, SEfile targets any user that, by moving inside a secure environment, wants to
perform basic operation on regular files. It must be pointed out that all encryption function-
alities are demanded to the secure device in their entirety. In addition, SEfile does not ex-
pose to the host device details about what, or where it is reading/writing data: thus, the
host OS, which might be untrusted, is totally unaware of what it is writing.

SEcube™ Development Kit - Getting Started Page 12 of 48
Document Title: SEcube™ Development Kit – L2 User Manual Release: 001
Document Classification: Private

3.1. Data Confidentiality

One of the most important considerations a Secure File System deals with is the way in
which files are encrypted. A Secure File is made up of several encrypted and signed sectors.
The first sector is dedicated to the Secure File header, which provides information on the file
itself (i.e., length, metadata) and contains a padding if needed, while the other sectors en-
code file data themselves (Figure 4).

This block structure has the great advantage to allowing data manipulation on subparts of a
file by interacting with a subset of its blocks; in this case, there is not the need to decrypt
and encrypt the whole file and, in this way, the time overhead is considerably lowered, es-
pecially in the common case of limited editing interesting a single block sector.

Figure 4 – Secure File structure

3.1.1. Encryption Algorithm

The Advanced Encryption Standard (AES), also known by its original name Rijndael, is a spec-
ification for the encryption of data established by the U.S. National Institute of Standards
and Technology (NIST) in 20013. AES has been adopted by the U.S. government and is now
used worldwide, becoming a de-facto standard for guaranteeing data confidentiality. It is
characterized from being a block cipher, since it is based on a design principle known as a
substitution-permutation network, combination of both substitution and permutation of
blocks of fixed size, and is fast in both software and hardware.

However, a block cipher by itself is only suitable for the secure cryptographic transformation
(encryption or decryption) of one fixed-length group of bits (i.e., a block). Then, a mode of
operation is an algorithm that uses a block cipher to provide an information service such as
confidentiality or authenticity. A mode of operation describes how to repeatedly apply a ci-
pher's single-block operation to securely transform amounts of data larger than a block.

Most modes require a unique binary sequence, often called an initialization vector (IV), for
each encryption operation. The IV should be non-repeating and, for some modes, random as
well. The initialization vector is used to ensure distinct ciphertexts are produced even when

3 "Announcing the ADVANCED ENCRYPTION STANDARD (AES)". Federal Information Processing Standards Publication 197.

United States National Institute of Standards and Technology (NIST). November 26, 2001.

SEcube™ Development Kit - Getting Started Page 13 of 48
Document Title: SEcube™ Development Kit – L2 User Manual Release: 001
Document Classification: Private

the same plaintext is encrypted multiple times independently with the same key. Block ci-
phers have one or more block size(s), but during transformation the block size is always
fixed. Block cipher modes operate on whole blocks and require that the last part of the data
be padded to a full block if it is smaller than the current block size.

Currently, the APIs, Level L1 and L0, supports only AES as cipher algorithm. SEfile leverages it
by using the Counter (CTR) mode of operation.

The simplest of the encryption modes is the Electronic Codebook (ECB) mode. The message
is divided into blocks, and each block is encrypted separately.

Counter mode turns a block cipher into a stream cipher. It generates the next keystream
block by encrypting successive values of a "counter". The counter can be any function which
produces a sequence which is guaranteed not to repeat for a long time, although an actual
increment-by-one counter is the simplest and most popular. Today, CTR mode is widely ac-
cepted and any problems are considered a weakness of the underlying block cipher, which is
expected to be secure regardless of systemic bias in its input4.

This said, SEfile uses an encryption scheme as follows. Each sector, except the header, is en-
crypted using AES-256-CTR, meaning that each block cipher depends on an ascending coun-
ter which start from a randomly selected initialization vector, generated using ad-hoc func-
tions provided from the crypto engine of any OS.

The header sector, instead, is encrypted using AES-256-ECB, to be independent from any ini-
tialization vector.

4 Helger Lipmaa, Phillip Rogaway, and David Wagner. Comments to NIST concerning AES modes of operation: CTR-mode en-

cryption. 2000

SEcube™ Development Kit - Getting Started Page 14 of 48
Document Title: SEcube™ Development Kit – L2 User Manual Release: 001
Document Classification: Private

3.2. Data authentication

On the other hand, there exists the problem of guaranteeing the integrity of the whole file
against malicious attackers: each sector is signed so the integrity and the authenticity of
each one can be easily checked.

3.2.1. Algorithms

The Secure Hash Algorithm (SHA) is a family of cryptographic hash functions published by
the National Institute of Standards and Technology (NIST) as a U.S. Federal Information Pro-
cessing Standard (FIPS).

In particular, SHA-3 uses the sponge construction, in which data is "absorbed" into the
sponge, then the result is "squeezed" out5. In the absorbing phase, message blocks are
XORed into a subset of the state, which is then transformed. In the "squeeze" phase, output
blocks are read from the same subset of the state, alternated with state transformations.
The size of the part of the state that is written and read is called the "rate" (often denoted
r), and the size of the part that is untouched by input/output is called the "capacity" (often
denoted c). The capacity determines the security of the scheme. The maximum-security lev-
el is half the capacity.

Finally, a keyed-hash message authentication code (HMAC) is a specific type of message au-
thentication code (MAC) involving a cryptographic hash function and a secret cryptographic
key. It may be used to simultaneously verify both the data integrity and the authentication
of a message, as with any MAC. Any cryptographic hash function, such as MD5 or SHA-3,
may be used in the calculation of an HMAC; the resulting MAC algorithm is termed HMAC-
MD5 or HMAC-SHA accordingly. The cryptographic strength of the HMAC depends upon the
cryptographic strength of the underlying hash function, the size of its hash output, and on
the size and quality of the key.

An iterative hash function breaks up a message into blocks of a fixed size and iterates over
them with a compression function. For example, MD5 and SHA-1 operate on 512-bit blocks.
The size of the output of HMAC is the same as that of the underlying hash function (128 or
160 bits in the case of MD5 or SHA-1, respectively), although it can be truncated if desired.

Within SEfile each sector, including the header, is signed using an authenticated signature
obtained with SHA-256-HMAC, meaning that the signature depends on both the data con-
tained in the sector itself and on a chosen encryption key. To use two different keys to en-
crypt data and to digest authentication, a feature increasing overall system security, SEfile
leverages on the pbkdf2() function already implemented within the SDK. This function, pro-
vided with a 32 Bytes long salt vector (randomly chosen), is used to generate parameters
needed for the secure sessions, such as a new key and the number of iteration of the au-
thentication procedure. This mechanism is important to enhance security, because even if
one key is unveiled, the second one would be too difficult to obtain.

The procedure enforced within SEfile to ensure data protection and confidentiality is hereby
described. Firstly, the file is divided into chucks, sectors containing each exactly 512 Bytes
(constant defined as SEFILE_SECTOR_SIZE).

Except for the first (the header), each sector is divided into three main fields: data, length
and signature. The length field is composed of 2 bytes and stores the number of valid user

5 Guido Bertoni, Joan Daemen, Michaël Peeters and Gilles Van Assche. "The Keccak sponge function family: Specifications

summary".

SEcube™ Development Kit - Getting Started Page 15 of 48
Document Title: SEcube™ Development Kit – L2 User Manual Release: 001
Document Classification: Private

data bytes contained in the data field. The signature field is composed of 32 bytes and stores
the result of the authenticated signature, to check whether the sector is corrupted or not
and if the data stored in sector were written by an authorized user.

The data field represent the effective payload where the user data are stored, it can be
computed as SEFILE_LOGIC_DATA = SEFILE_SECTOR_SIZE - 2 - 32 (Bytes).

The overhead (in Bytes) resulting from this kind of file structure can be easily computed:

For example, encrypting a file of 2 GiB with SEFILE_SECTOR_SIZE = 512 Bytes will produce an
overhead of 152.70 MiB, while for the same file if SEFILE_SECTOR_SIZE is set to 4096 Bytes
instead its total overhead is 17.15 MiB.

The first sector of the Secure File follows a different structure from the others and is not
used to store user data, containing instead several information about the file itself, as fol-
lows:

The first two vectors of the header are respectively a 32 Bytes long salt used for generating a
different key to authenticate digest, while the second one is the random initialization vector
used as counter for encrypting all the data sectors of the secure file. The fname_len field
contains the length of the filename which is written right after the header fields.

The magic field might be used for representing what type of file it has been encrypted. The
ver field is used for representing with what version of SEfile it has been encrypted. The uid
and uid_cnt fields, finally, are designed to host information about the user who encrypted
the file and its permission. However, all these last features are not supported yet.

All the unused bytes for padding of the header sector, and all the unused bytes obtained
when any sector is not filled up to its capacity, are randomly chosen in order to avoid a
known plain-text attack, an attack model for cryptanalysis where the attacker has access to
both the plaintext (called a crib), and its encrypted version (ciphertext). These can be used
to reveal further secret information such as secret keys and code books.

SEcube™ Development Kit - Getting Started Page 16 of 48
Document Title: SEcube™ Development Kit – L2 User Manual Release: 001
Document Classification: Private

3.3. Running the Provided Demo

3.3.1. Secure Text Editor and Secure Image Viewer

The first demo provided deals with a typical case for file editing: reading and writing from
and to text files and images.

Both these two projects have been developed in C++ with Qt libraries. They are based on 3
major security classes, in a one-to-one mapping with the 3 most important security opera-
tions: the first one manages the security platform to which the user wants to log in, the sec-
ond one allows the selection of the secure environment through the secure_update() func-
tion, while the third one manages the opening and creation of files resorting on the se-
cure_ls().

Both these applications were both tested on Windows and Linux6. To compile and launch
the Secure Text Editor, is sufficient to acquire the “SEfile_TXT” folder and to import the Qt
project “SEfile_TXT.pro” stored within. The project can be built in a straightforward manner
directly from Qt. Similar conditions hold for the Secure Image Viewer, where the folder of
interest is “SEfile_IMG” and the project “SEfile_IMG.pro”.

The two applications work similarly.

The Secure Text Editor can open both a plain-text file or a cipher-text file; once the file is
opened (no matter what it is) the corresponding encrypted/decrypted version will be creat-
ed in the same directory. In case the user wants to generate a new file, he can do it by just
starting writing on the left box and then clicking on Save both button. It is possible to verify
that encrypted files cannot be read properly from regular text editors; conversely, the Se-
cure Text Editor can transparently read any encrypted file (decrypting also the file name)
which content has not been altered and is, thus, trusted. Unauthenticated content (i.e., con-
tent not corresponding to the file signature) is, instead, discarded.

The Secure Image Viewer, similarly, can open both a plain-text image file or a cipher-text
image file; once the file is opened (no matter what it is) the corresponding encrypt-
ed/decrypted version will be created in the same directory. At the present, the software
supports the three most common image file formats: PNG (Portable Network Graphics),
JPG/JPEG (Joint Photographic Experts Group) and BMP (Bitmap image file). It is possible to
verify that encrypted images cannot be displayed from regular viewers; conversely, the Se-
cure Image Viewer can transparently read any encrypted file (decrypting also the file name)
which content has not been altered and is, thus, trusted. Unauthenticated content (i.e., con-
tent not corresponding to the file signature) is, instead, discarded. To test this assumption, is
possible, for instance, to open both a plain-text and a ciphered BMP file with a binary editor;
while in the first case it is easy to modify Bytes (i.e., pixels of the image) leaving no trace (a
regular image viewer will continue displaying the image, and users may not notice data tam-
pering), in the second case the resulting file will not be recognized as valid (being modified
from a malicious attacker) and no image viewer, not even the Secure one, will open it.

6 Tested on Windows 7 x64 and Ubuntu 14.04LTS kernel 3.16

SEcube™ Development Kit - Getting Started Page 17 of 48
Document Title: SEcube™ Development Kit – L2 User Manual Release: 001
Document Classification: Private

3.3.2. SQLite and DB browser for SQLite

SQLite is a database engine developed in C and freely distributed online7. Leveraging on its
modularity, the SQlite system has been modified to resort on a custom functionalities wrap-
per based on SEfile, rather than using directly the OS calls.

The starting point of this work was the template offered as example for making a custom
VFS interface distributed along with SQLite, version 3.13.0. The outcome has been a secure
version of the SQLite, hereinafter referred to as secureSQLite.

DB Browser for SQLite is an open source project developed in C++ with Qt libraries and con-
sists of an application that let the user browse a database and perform some basic opera-
tions to manage it8.

The provided demo integrates secureSQLite with this application to show the potentialities
of this secure library. To achieve such purpose, this demo leverages on Qt Creator as Inte-
grated Development Environment (IDE) and on DB Browser for SQLite version 3.9.0. The
demo project includes both the libraries SEfile and secureSQLite, with regards to the APIs de-
scribed in the following Paragraph. With few simple modifications, the DB Browser for
SQLite works flawless in a secure fashion, ensuring that information stored in a DB are not
accessible from unauthorized users.

To run it, it is needed to acquire and extract the “SECUREsqlitebrowser-3.9.0” archive. The
folder contains a Qt project, already set to compile, and produce, a regular (i.e., insecure)
version of the DB Browser for SQLite. Instead, to produce the secure version, it is simply
needed to add the "CONFIG+=SQLITE_OS_SECURE" define to the project, as in Figure 59.

Figure 5 – Qt project interface for compiling the secureSQLite

7 https://sqlite.org/ - All the code external from SEfile is intended not of our property and is released respecting its original

license and terms of use
8 http://sqlitebrowser.org/ - All the code external from SEfile is intended not of our property and is released respecting its

original license and terms of use
9 Tested on Ubuntu 14.04x64 LTS Kernel 3.16. Compilation may require the the compile flag “_GNU_SOURCE”.

https://sqlite.org/
http://sqlitebrowser.org/

SEcube™ Development Kit - Getting Started Page 18 of 48
Document Title: SEcube™ Development Kit – L2 User Manual Release: 001
Document Classification: Private

The executable resulting from the compilation will act almost exactly as its insecure coun-
terpart, with two major differences, nevertheless maintaining the same user interface (Fig-
ure 6).

The first one is visible to the user, as he/she has the possibility to select one of the security
environments (algorithm and key) supported from the device by using the “Set Environ-
ment” function.

The second one is not directly visible to the user, and represents the key aspect of the demo
project: every DB resulting from a commit (i.e., “Write Changes” operation) is cyphered and
signed up to its file name before being stored, making it unreadable from the regular inse-
cure DB Browser for SQLite. Instead, any DB produced from the regular browser is easily
readable, and modifiable, from any binary editor, making it a untrusted for storing DB with
private information.

Figure 6 - Overview of DB Browser for secureSQLite

3.3.3. The SQLite APIs Commented

Any application leveraging on the secureSQLite oversees the initialization and management
(up to the release) of all its resources; this is set to not enforce any constraint on the appli-
cation, which might be, as instance, either based on a command line interface or on a graph-
ical user interface.

The starting point of this work has been the official template offered as example for making
a custom VFS interface distributed along with the original version of SQLite. This template is
a simple example for creating a working interface for Unix environment that also implement
a simple software cache for reducing the number of disk accesses. To force SQLite to use this
VFS interface instead of the standard ones, it was implemented a mechanism based on pre-
compiler definitions.

SEcube™ Development Kit - Getting Started Page 19 of 48
Document Title: SEcube™ Development Kit – L2 User Manual Release: 001
Document Classification: Private

Hereby it is listed a subset of the most important VFS interface functions that have been im-
plemented to develop the provided demo with a brief explanation on their usage and im-
plementations.

SQLITE_API int SQLITE_STDCALL sqlite3_os_init(void)

SQLITE_API int SQLITE_STDCALL sqlite3_os_end(void)

These two functions are respectively used to assign and release the data structure made up
by pointers to the rest of VFS interfaces that has been associated with common I/O opera-
tions.

static int SecureDirectWrite(SecureFile *p, const void *zBuf, int iAmt, sqlite_int64 iOfst)

This function is used to wrap a write operation, it accepts as parameters a custom file de-
scriptor, the buffer that should be written, the number of bytes to be written and the offset
from the start of the file. This function checks if the software cache should be flushed to
disk, change the file pointer to iOfst and the issue a secure_write() call.

static int SecureRead(sqlite3_file *pFile, void *zBuf, int iAmt, sqlite_int64 iOfst)

This function is used to wrap a read operation, it accepts as parameters a custom file de-
scriptor, the buffer that should be read, the number of bytes to be read and the offset from
the start of the file. This function checks if the software cache should be flushed to disk,
change the file pointer to iOfst and the issue a secure_read() call.

static int SecureTruncate(sqlite3_file *pFile, sqlite_int64 size)

This function is used to change the size of the pointed file pFile to size. In this case it simply
issues a secure_truncate().

static int SecureSync(sqlite3_file *pFile, int flags)

This function is used to flush OS buffers (and not the software cache) to disk thanks to se-
cure_fsync(). In this case the flags are ignored.

static int SecureFileSize(sqlite3_file *pFile, sqlite_int64 *pSize)

This function after writing the pending software cache to disk, it returns the file's current
size thanks to secure_getfilesize(). Since sqlite3_file is highly customizable, the path was
added to the file descriptor to be compatible to the SEfile API.

static int SecureOpen(sqlite3_vfs *pVfs, const char *zName, sqlite3_file *pFile, int flags,
int *pOutFlags)

This function is used to manage opening/creating of a secure database thanks to se-
cure_open(). In this case pVfs and pOutFlags were ignored, while zName is the path to the

SEcube™ Development Kit - Getting Started Page 20 of 48
Document Title: SEcube™ Development Kit – L2 User Manual Release: 001
Document Classification: Private

file that should be opened, pFile is the pointer to the file descriptor obtained, and flags is
used to determine how the file should be opened.

WARNING on the flags:

 The combination (SEFILE_READ, SEFILE_NEWFILE) is not allowed and therefore fails;

 The combinations (SEFILE_READ, SEFILE_OPEN) and (SEFILE_WRITE, SEFILE_OPEN)
work only if the file already exists.

static int SecureDelete(sqlite3_vfs *pVfs, const char *zPath, int dirSync)

This function is used to delete a file pointed by zPath and it was developed as a wrapper to
unlink() in Unix and DeleteFile() in Windows, thanks to crypto_filename() function. In this
case dirSync parameter is ignored.

static int SecureAccess(sqlite3_vfs *pVfs, const char *zPath, int flags, int *pResOut)

This function should mimic the access() systemcall available in Unix environment, and it will
set pResOut to 1 if the file pointed by zPath exists and is readable or readable and writable,
otherwise to 0. In this case pVfs and flags were ignored.

static int SecureFullPathname(sqlite3_vfs *pVfs, const char *zPath, int nPathOut, char
*zPathOut)

This function is used to retrieve the full path of a secure database pointed by zPath by writ-
ing at most nPathOut bytes to zPathOut. In this case pVfs is ignored.

SEcube™ Development Kit - Getting Started Page 21 of 48
Document Title: SEcube™ Development Kit – L2 User Manual Release: 001
Document Classification: Private

4. SElink

SElink is a software application that uses the SEcube™ open platform to secure the network
traffic. It can encrypt network streams originating from any application, regardless of the
application-level protocol.

SElink is a reference implementation of an application on top of the Layer1 API for SEcube™.
By using SElink it is possible to add a secure network layer to any software, without modify-
ing its code base. In other words, the user can employ any of his/her favorite network-
enabled software (e.g., web browser, remote desktop viewer) and entrust the customizable
security features to the SEcube™ platform, in a way that is completely transparent to the us-
er, allowing him to exploit the benefits of the security functionalities without having deep
knowledge about security.

The software does not need to be aware of the presence of SElink and will function as usual,
because SElink intercepts connections at a lower level.

SElink is made up of two macro-components (Figure 7):

 Client-side software: it is installed on the host that initiates the connection. It in-
cludes a driver, a background service and a graphical user interface. The driver inter-
cepts outgoing connections and redirects them to the service. The service bridges
the connection to the destination, applying the encryption layer

 Server-side software: it is installed on the host that accepts the connection. It in-
cludes a background service and a graphical configuration utility. The service is
symmetrical to the client-side service, bridging the encrypted connection to its final
destination.

The Client-side components are:

 SElink driver

 SElink service

 SElink GUI.

The driver is needed to intercept all new TCP connections, system-wide, while not modifying
any application (Figure 8). The driver redirects all connections to the service, which can de-
cide whether each should be encrypted or not. The graphical user interface is a distinct ap-
plication too, because Windows services are not intended to create GUI elements within the
user’s session.

The server-side components are:

 SElink gateway

 SElink gateway web UI.

On the server’s side a “gateway” application, running as daemon, bridges the secure connec-
tions created by a SElink client host to any server software (Figure 9). This daemon can by
configured by directly editing its configuration file, or by using a graphical interface through
any web browser.

SEcube™ Development Kit - Getting Started Page 22 of 48
Document Title: SEcube™ Development Kit – L2 User Manual Release: 001
Document Classification: Private

Figure 7 - SElink architecture

Figure 8 - Connection establishment process; each directed arrow represents a TCP
connection request

Figure 9 - final connections; each bidirectional arrow represents a TCP connection

SEcube™ Development Kit - Getting Started Page 23 of 48
Document Title: SEcube™ Development Kit – L2 User Manual Release: 001
Document Classification: Private

4.1. SElink driver

The choice of implementing a driver has been taken since it cannot be tampered from other
user-mode applications, making it more secure and reliable; moreover, it leaves no traces
within the applications’ executable memory, so it goes undetected by most software protec-
tion frameworks and does not interfere with applications.

After some experiments with other frameworks, the driver was ultimately developed with
the Windows Filtering Platform (WFP) API. The superseded Transport Driver Interface (TDI)
API was discarded a priori, because of its deprecation. NDIS, despite having all the needed
features, would have required more effort to achieve the same result.

The current WFP solution is very lean, consistent with the practice of performing the least
needed amount of work within the kernel. In fact, any faulty code within the kernel can
cause a system crash, hence the need to restrict kernel-mode code to the minimum neces-
sary amount.

An important reason why the filtering logic has been implemented in user-space is that not
all operations can be performed as easily within the kernel. To be more specific, routines
within the kernel run at different Interrupt Request Levels (IRQL), depending on their priori-
ty. Each of the IRQLs has a mask for interrupts, with higher levels masking more interrupts.
At higher IRQLs functions must complete as soon as possible, deferring any time-consuming
work.

Also, functions that can cause a page fault, such as operations on pageable memory, must
only be performed at the lower levels that do not mask the specific interrupt. Specifically,
WFP filter callback functions run at IRQL = DISPATCH_LEVEL, and cannot access pageable
memory nor perform file I/O.

The SEcube™ platform uses file I/O to communicate with the device; its host API would need
to be completely redesigned to use it within a driver. The driver is written in C, as most driv-
ers are. There is no official support to any other language for driver development with the
Windows Driver Framework. As a matter of fact, most functions from the C standard library
cannot be used either.

For network filtering the API Hooking approach was considered and discarded be- cause of
the disadvantages discussed in the previous chapter. LSPs have not been considered for the
deprecation issue. Other user-space options involve either modifying applications to add
support for SElink or restrict the applicability of SElink to applications supporting proxy pro-
tocol (e.g. HTTP/HTTPS proxy or SOCKS). Hence the decision to develop a kernel-mode filter.

The NDIS API was considered first, but considerable effort would have been required to keep
track of TCP streams from the level at which NDIS filters operate. Windows Filtering Platform
(WFP) has been chosen over NDIS because of its sup- port for transport level filtering. Also,
WFP is recommended by Microsoft itself over the alternatives.

The driver has the main purpose of redirecting outgoing TCP connections from any applica-
tion to a local proxy service.

The driver needs to exchange information with the service mainly for the following purpos-
es:

 Sending information about the redirected connection, so that the service can bridge
the connection to the intended destination

 Getting the process ID of the service.

SEcube™ Development Kit - Getting Started Page 24 of 48
Document Title: SEcube™ Development Kit – L2 User Manual Release: 001
Document Classification: Private

Connection information is passed to the service through the redirect context, as stated be-
fore. As for the PID, the service sets a WFP Provider Context at startup, which can be read
within the driver. Since the provider context cannot be read within the callback functions,
because of the IRQL, a periodic timer task running at IRQL = PASSIVE_LEVEL polls the provid-
er context at a fixed interval.

SEcube™ Development Kit - Getting Started Page 25 of 48
Document Title: SEcube™ Development Kit – L2 User Manual Release: 001
Document Classification: Private

4.2. SElink service

The SElink service is the main component of the client-side software: all the connections
originating from the machine go through the service, which decides which connections
should be encrypted and which should not.

The choice of the programming language, C++, is driven by multiple reasons:

 It is mandatory that the service performs well with many connections (hundreds to
thousands) because it must handle most of the network traffic of the machine

 The service needs some data structures such as maps, sets, linked lists, which are
not part of the C standard library

 The service must interface directly with the Windows API to be able to communicate
with the driver

 The service must use a SEcube™ device, whose API is only available for C.

C++ is a multi-paradigm language that seamlessly combines low-level and high-level fea-
tures. It can directly include C code, perform raw virtual memory access, but is also suited to
object-oriented and functional approaches. Plus, following the introduction of the C++11
standard, it has vast standard library that includes a common interface to some OS-specific
features such as threading.

The boost library is also included for the following features:

 Command line parameters: used to parse the command line, generate a help mes-
sage and useful error description messages

 JSON file parsing: for the configuration files

 Filesystem operations: to manipulate paths and access files through a OS-
independent interface

 String formatting: used for some log messages

 Logging: to conveniently categorize log messages and possibly redirect them to a log
file

 Hashing: for faster matching of an array/string against a set of arrays/strings

 Event-based socket I/O: used to accept connections and react to network events.

Since this application shares much of the logic with its cross-platform server-side counter-
part, most of the classes are designed to be cross-platform, and are reused in SElink gate-
way.

The service is intended to be a high performance and low footprint application; therefore,
C++ was chosen for its unique combination of performance and high-level features. Boost
further extends C++ with cross-platform implementations of additional features. Notably a
high-performance event-driven socket I/O library is included in Boost.

The service oversees encrypting/decrypting and forwarding outgoing connections on the cli-
ent side.

SElink service is configured by means of an external GUI application, which can send some
commands to the service to perform operations or retrieve information.

SEcube™ Development Kit - Getting Started Page 26 of 48
Document Title: SEcube™ Development Kit – L2 User Manual Release: 001
Document Classification: Private

The commands are hereby listed:

 reload: reload the filter rules file and update the filter rules

 status: query the device and service status

 discover: discover all connected devices, returning a list of their paths and serial
numbers

 set_device: select a device by its serial number and pass its password

 reset: disconnect from the device and clear the device configuration.

The service creates a named pipe at startup, on which it listens for connections from the
GUI. For each connection to the named pipe, a single request packet is processed and a re-
sponse packet is returned, then the pipe is disconnected.

A thread is devoted to inter-process communication only. All the I/O operations for the
named pipe are handled asynchronously with Windows overlapped I/O functions, and all
wait operations, in addition to waiting on I/O completion with a timeout, also wait on a stop
event. This makes it possible to immediately stop the inter-process communication thread
when the service closes, without resorting to polling.

SElink service can register itself as a Windows service, and be managed through the Win-
dows’ services interface.

Running a process as a Windows service implies that:

 It runs as the SYSTEM user

 It can be configured to run at startup

 It can be enabled, disabled, started, stopped or deleted from a simple command line
interface or from the Windows Management Console.

Summarizing, starting SElink is as simple as issuing the following commands to the Windows
command prompt:

SEcube™ Development Kit - Getting Started Page 27 of 48
Document Title: SEcube™ Development Kit – L2 User Manual Release: 001
Document Classification: Private

4.3. SElink service

An important part of the project is allowing users, with little prior knowledge of cryptog-
raphy and programming, to use SElink for the practical purpose of encrypting network
traffic. Another point for the GUI is the necessity to provide an interactive dialog window to
log into the SElink, and avoid leaving the passphrase in the command line or configuration
file.

The GUI could not be included within the service, because there is no conventional way of
presenting a GUI to the user while running as the SYSTEM user. A simple GUI, here described
briefly, has been developed for the cited reasons.

The Windows Presentation Framework (WPF) is a framework for Windows GUI applications,
part of the .NET framework. It was chosen for the development of SElink GUI because of its
overall features and good integration with the operating system. The choice was not re-
stricted to cross-platform framework, because the application is specifically made for the
SElink client-side software, running on Windows.

Among the .NET and WPF features that were used there are:

 Windows tray icon functionalities

 JSON parser

 Customizable DataGrid GUI component.

When the application is run, it creates a clickable icon in the tray area, which is used to ac-
cess the configuration dialogs. There are two main dialogs: the device selection dialog and
the filter rules dialog, explained in the next sections (Figure 10).

Figure 10 – Tray icon interface

For the service to connect and work properly, the user must select a suitable device (Figure
11).

SEcube™ Development Kit - Getting Started Page 28 of 48
Document Title: SEcube™ Development Kit – L2 User Manual Release: 001
Document Classification: Private

Figure 11 – Device selection interface

A passphrase is required to unlock the device (Figure 12).

Figure 12 – Unlocking the device

After confirming the passphrase, the outcome of the operation is shown via balloon
notification (Figure 13). The GUI does not directly perform any operation on the devices. In-
stead it uses the service by sending commands through a named pipe.

Figure 13 – Login notification

The filter rules window provides an easy way to edit the filter rules configuration file, mini-
mizing the risk of making mistakes or producing an invalid configuration. Based on the Data-

SEcube™ Development Kit - Getting Started Page 29 of 48
Document Title: SEcube™ Development Kit – L2 User Manual Release: 001
Document Classification: Private

Grid WPF component, it allows adding, removing and editing the filter rules. Rules are pro-
cessed in order and only the first matching rule is considered.

Therefore, there is the possibility for a rule to cover one of the following rules, which means
that any entity matching the second rule also matches the first rule, so the second rule will
never be used. The insertion of a masking rule may or may not be intentional, therefore a
warning is shown if there are any masked rules, and which is the first masking rule for each
masked rule (Figure 14).

Figure 14 – Filter rules editor

All fields within each rule are validated, to prevent creating an invalid configuration. Each
row of the grid shows a relevant error if it does not pass a validation rule (Figure 15).

Figure 15 - Figure 16 – Filter rules editor highlights an invalid rule

SEcube™ Development Kit - Getting Started Page 30 of 48
Document Title: SEcube™ Development Kit – L2 User Manual Release: 001
Document Classification: Private

As soon as the rules are applied, the rules file is written and the service is signaled to reload
the file.

SEcube™ Development Kit - Getting Started Page 31 of 48
Document Title: SEcube™ Development Kit – L2 User Manual Release: 001
Document Classification: Private

4.4. Running the Provided Demo

The main goal of this demo is to show of a Windows software (gateway) that transparently
intercepts and encrypts/decrypts TCP streams, and its server-side counterpart, a cross-
platform proxy that intercepts and decrypts/encrypts the streams.

This software use the Layer1 API of the SEcube™open platform to perform the encryption
step. The software can encrypt network streams originating from any application transpar-
ently, without the need to modify or recompile the application.

In addition, the final product is very be user-friendly and configurable by means of a graph-
ical user interface, both client-side and server-side, and easy to install and capable of run-
ning in background silently, requiring minimum user attendance after setup.

To establish a secure communication, a properly configured host running the client software
must initiate a connection towards a properly configured host running the server software.
In most cases the user will only need to install and configure the client software.

4.4.1. Requirements

Client requirements:

 64-Bit Windows 10

 SEcube™ device10.

Server requirements:

 Any of:

o Windows 7 or newer11

o Linux

 SEcubeTM device8.

4.4.2. The Client Software

The only prerequisite is to install the client software is the Windows C++ Runtime library,
freely accessible on-line12.

There are three components to be installed for the software to operate properly:

1. SElink driver

2. SElink service

3. SElink GUI.

The provided setup executable installs all the components at once.

Since the driver is not signed, Windows 10 needs to run in Test Mode to install the driver.

10 SElink can be used without a SEcube device, for testing purposes or custom configurations.
11 Daemon mode not yet supported on Windows.
12 https://www.microsoft.com/it-it/download/details.aspx?id=48145

SEcube™ Development Kit - Getting Started Page 32 of 48
Document Title: SEcube™ Development Kit – L2 User Manual Release: 001
Document Classification: Private

To do so:

1. Open an administrator command prompt and execute the following command:
bcdedit /set TESTSIGNING ON
Warning: this command disables driver signature check enforcement on Windows.

2. Reboot

Finally, run selink-setup.exe.

After the setup procedure, the SElink client software can be easily configured through the
GUI application. You can access the device configuration window by left-clicking the tray
icon and choosing Device. The status of the service and the device is shown on the top.

To connect a SEcubeTM device:

1. Select a suitable device from the drop-down menu. If a device does not show up,
press the refresh button on the right.

2. Press the Connect button

3. Insert your user pin and click the Login button

4. The device configuration window should disappear, and a notification should appear
shortly after.

To disconnect it, it is simply needed to press the Disconnect button.

You can access the filter rules configuration window by left-clicking the tray icon and choos-
ing Filter rules.

Filter rules are used to manage outgoing connections, to decide which will be encrypted and
with which key. A filter rule is made of:

 A condition to select connections based on some parameters:

o Executable path: full path to the source application’s executable file

o Destination IP: destination IP address

o First port, Last port: destination port range.

 An action to be taken with the matching connections:

o Action: one of Allow, Block or Encrypt

o Key: the key ID to be used when encrypting.

In order for a condition to match a connection, all the parameters must match. An empty
parameter stands for any value.

Within the GUI you may define a list of filter rules, to select different actions for different
connections. For example, the user might assign a different encryption key to each applica-
tion you are going to use. Note that the order in which rules appear is important: the first
matching rule is chosen, regardless of the following rules. If a connection does not match
any rule, it is allowed (not encrypted) by default.

SEcube™ Development Kit - Getting Started Page 33 of 48
Document Title: SEcube™ Development Kit – L2 User Manual Release: 001
Document Classification: Private

You can create a new rule by doing any of the following:

 Right-click on the grid and select Insert after or Insert before

 Fill the last row of the grid

The rules’ fields must comply with the following constraints:

 Description must be shorter than 64 characters

 Destination IP must be a valid ipv4 or ipv6 address

 First port and last port must describe a valid port range

o first port, last port must be both natural numbers lesser than 65536, or both
empty

o if not empty, first port must be lesser than or equal to last port

 The key must be

o An integer number if the action is Encrypt

o Empty if the action is Allow or Block

Tip: you can override the default action by adding a rule with empty condition fields at the
end of the list.

Drag and drop a row over the desired position to move the corresponding rule. Right-click
on a row and select Delete to delete it.

4.4.3. Server side

To install the needed software on server side it is sufficient to:
1. Install g++ and the boost development libraries for your system13

2. cd into the SElink source code directory and build the SElink gateway

$ make

3. Install

o Default installation

1. # make install

The software and configuration files will be installed in /opt/selink/

It will be configured to run without a SEcube device, using the keys

from /opt/selink/keys.json

The systemd unit will be installed

in /usr/lib/systemd/system/selinkgw.service

o Custom installation

 Copy bin/selinkgw and any needed configuration file to a target di-
rectory

13 e.g., # pacman -S base-devel boost on Arch Linux

SEcube™ Development Kit - Getting Started Page 34 of 48
Document Title: SEcube™ Development Kit – L2 User Manual Release: 001
Document Classification: Private

 Customize the “system” unit in “example/selinkgw.service” and
copy it to the appropriate location for the system.

The command to start the daemon is: # systemctl start selinkgw; to stop it launch:
systemctl stop selinkgw .

The configuration is made up of a simple list of port mappings. Each entry contains:

 A description text

 The port on which encrypted connections will be accepted

 The host and port to which connections will be redirected, unencrypted

 The key id to use for encryption.

You may configure the SElink gateway in two ways:

 Using the web UI

 Using the configuration file.

To use the web UI:

1. Install python3, python3 modules bottle, and jsonschema on your system14

2. cd into the gwconfig directory and run the Web UI as root (assumes a default instal-
lation)
python3 gwconfig.py --use-token

3. Open the link on the terminal output with a web browser

Within the web UI you can add a new rule or delete an existing one.

To add a new rule, press Add and insert the rule. The mappings’ fields must comply with the
following constraints:

 Listen port and Redirect port must be natural numbers lesser than 65536

 Redirect host must be a valid ipv4 or ipv6 address.

To delete a rule, press the trash icon in the last column of the row to delete. After each mod-
ification, please remember to press the Apply button. The new configuration will be saved
and applied immediately.

Viceversa, it is possible to edit directly the configuration file as follows:

1. Edit the configuration file with a text editor. Please refer
to “example/selinkgw.json” for an example file

2. Signal the daemon: # systemctl reload selinkgw

14 e.g., # pacman -S python python-bottle python-jsonschema on Arch Linux

SEcube™ Development Kit - Getting Started Page 35 of 48
Document Title: SEcube™ Development Kit – L2 User Manual Release: 001
Document Classification: Private

4.4.4. Advanced configuration

The driver can be configured to only filter connections with destination ports within a port
range, and allow anything else, regardless of whether the service is running.

The driver configuration is stored in the following registry key:
HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Service\selinkflt\Parameters.

Name Type Description

PortFirst REG_DWORD First port of filtered port range

PortLast REG_DWORD Last port of filtered port range

ServicePort REG_DWORD
Port on which the service is listening for redirected con-
nections

As a convention on file paths, any path starting with “:” is relative to the executable’s path.
For example, if the executable is located in “C:\SElink\selinksvc.exe”,
then “:selinksvc.json” points to “C:\SElink\selinksvc.json”.

Any relative path is relative to the current working directory, which depends on how the
process was created.

INI files

Command line options for the SElink service and SElink gateway may be specified either by
passing them as parameters on the command line, or setting them into dedicated configura-
tion files:

 For SElink service, create a file named “selinksvc.ini” in the same directory as the ex-
ecutable.

 For SElink gateway, create a file named “selinkgw.ini” in the same directory as the
executable.

An example of a valid “.ini” configuration file is:

provider=soft

keys=:keys.json

Please note that only long options (i.e., no short keys) are allowed in the configuration file.

SEcube™ Development Kit - Getting Started Page 36 of 48
Document Title: SEcube™ Development Kit – L2 User Manual Release: 001
Document Classification: Private

SElink service options

Option Value Description

--help, -h (None) Show a help message

--log, -l log file path
Set the location of the log file. Defaults
to “:selinksvc.log” when running as service, or none
when running in foreground.

--config, -c
configuration file
path

Set the location of the filter rules configuration file. De-
faults to “:selinksvc.json”.

--
provider, -
p

provider type Set the provider type. Can be “soft” or “secube”.

--keys, -k
path to key col-
lection file

Set the keys. Only required if the provider is of
type soft.

--port, -w port Set the driver connection redirection port.

--foregrou (None) Run in foreground instead of running as a service.

SElink gateway options

Option Value Description

--help, -h (None) Show a help message

--log, -l log file path
Set the location of the log file. Defaults
to /var/log/selinkgw.log when running as service, or
none when running in foreground.

--config, -c
configuration
file path

Set the location of the filter rules configuration file.
Defaults to :selinkgw.json.

--provider, -p provider type Set the provider type. Can be one of soft, secube.

--keys, -k
path to key col-
lection file

Set the keys. Only required if the provider is of
type soft.

--serial-
number, -s

path to key col-
lection file

Set the keys. Only required if the provider is of
type soft.

SEcube™ Development Kit - Getting Started Page 37 of 48
Document Title: SEcube™ Development Kit – L2 User Manual Release: 001
Document Classification: Private

Option Value Description

--pin, -z path to pin file
The user pin to log into the SEcube device will be
read from the specified file. Only required if the pro-
vider is of type secube.

--
foreground, -f

(None) Run in foreground instead of running as daemon.

SElink gateway web UI options

Option Value Description

--help, -h (None) Show a help message

--host host Host on which the web UI server will listen

--port port Port on which the web UI server will listen

--config, -c configuration path Path to gateway configuration file

--pidfile pidfile path Path to gateway pidfile

--use-
token

(None)
Generate a random token to restrict access to the
web UI

--debug (None) Enable debug mode

4.4.5. The APIs Commented

SElink uses the connection redirection feature in WFP, available for redirecting entire TCP
streams to a different destination, possibly for filtering. Filtering in WFP is done by register-
ing callback functions (named Callouts) intercepting the desired operations (e.g., connect,
send, receive) at the desired layer.

Within the driver there are two callouts: one for the ipv4 connect redirection layer
(FWPM_LAYER_ALE_CONNECT_REDIRECT_V4) and one for the ipv6 connect redirection layer
(FWPM_LAYER_ALE_CONNECT_REDIRECT_V6), which means that all connection requests
are intercepted. A filter specification is associated to the callout, restricting the intercepted
requests to TCP connections on a user-defined port range.

Resources from the Microsoft website, such the Bind or Connect Redirection feature docu-
mentation and the sample driver projects, have been taken as reference for the implemen-
tation of the driver.

Any intercepted connection request is redirected to the local proxy, that will possibly en-
crypt the connection and forward it to the intended destination. First, within the callout, a

SEcube™ Development Kit - Getting Started Page 38 of 48
Document Title: SEcube™ Development Kit – L2 User Manual Release: 001
Document Classification: Private

redirect context is filled with some data that will be useful for the user-space filter. The redi-
rect context is a WFP feature to attach arbitrary data to the connection request, which can
then be retrieved by a different application.

For later applying filter rules, the following parameters are added to the redirect context:

 Original source and destination address and port

 Process ID of the process which generated the request.

Then, the destination address and port are changed within the request headers, which effec-
tively causes the socket to connect to a local service instead of its original destination. WFP
also requires the target process ID to be set for local redirection, so the designated field is
filled with the service’s PID.

SEcube™ Development Kit - Getting Started Page 39 of 48
Document Title: SEcube™ Development Kit – L2 User Manual Release: 001
Document Classification: Private

APPENDIX A - SEfile APIs

This Section provides a brief overview about the SEfile APIs.

For more details about their implementation, please refer to the Doxygen-based documen-
tation.

uint16_t secure_init(se3_session *s, uint32_t keyID, uint16_t crypto)

uint16_t secure_update(se3_session *s, int32_t keyID, uint16_t crypto)

 uint16_t secure_finit()

These functions are used to manage the Environmental variables, since they are not public it
has been chosen to manipulate the content of this data with proper functions. This choice
has been made to specifically avoid the possibility of letting the user tampers those data. Af-
ter the board is connected and the user is correctly logged in, the secure_init() should be is-
sued. The parameter se3_session *s contains all the information that let the system
acknowledge which board is connected and if the user has successfully logged in. This func-
tion may set a default configuration thanks to the L1 provided services: it will be used the
first available key for encryption, and the first available algorithm that can manage to en-
crypt and authenticate data at the same time. Since keys must not be shared outside the de-
vice, from the host side, the user may just request to use a key represented by a unique ID
(uint32_t keyID).

Once the environment is set, the user is still able to edit these variables by calling the se-
cure_update(). In this case, a default configuration cannot be set, but the user is allowed to
edit even just one of the three environmental variables.

Once the user has finished all the operations it is strictly required to call the secure_finit() in
order to avoid memory leak. After, a new secure_init() can be invoked.

uint16_t crypto_filename(char *path, char *enc_name)

This function computes the encrypted name of the file specified at position path and writes
the result on char *enc_name. The filename is computed using the SHA-256 algorithm, so
there is no decryption function to obtain its clear text name unless the header sector is de-
crypted. Since the service which computes the SHA-256 works with 32 Bytes block, its result
is always on 32 bytes, and it is represented as hexadecimal values in ASCII encoding, mean-
ing that for each byte there will be 2 character, resulting in a 64 characters’ length.

In any case, this function takes care of parsing path so in enc_name will be copied every-
thing that comes before a “/” or “\” character to compute just the hash of the filename to
encrypt.

SEcube™ Development Kit - Getting Started Page 40 of 48
Document Title: SEcube™ Development Kit – L2 User Manual Release: 001
Document Classification: Private

uint16_t secure_open(char *path, SEFILE_FHANDLE *hFile, int32_t mode, int32_t access)

uint16_t secure_create(char *path, SEFILE_FHANDLE *hFile, int32_t mode)

These two functions, given a filename (as clear text), returns a customized file descriptor to
an opened secure file, within the SEFILE_FHANDLE variable. Both functions compute the en-
crypted filename using crypto_filename() and perform their specific functionality:

 secure_createalways generate a new file deleting its content if it already exists;

 secure_open try to open an existing file starting from its name in clear, if the option
SEFILE_NEWFILE is set in int32_t access, a new file is always created and any existing
file with the same name overwritten.

In both cases, int32_t mode is used for opening the file in read-only or read-write mode. A
real write-only mode has not been implemented since there exists a dedicated se-
cure_write() function.

If a new file is created, both functions create the Header sector for it, they allocate the
needed space in memory, populate the header structure with the proper information, en-
crypt and sign the whole sector (except for the nonce_pbkdf2, as it is needed to check the
signature of the header sector itself) before writing it on the storage device. The initializa-
tion vectors are randomly generated when a new file is created and then they are stored in
proper fields of the file descriptor SEFILE_FHANDLE *hFile.

After executing this two functions the file pointer heads toward the virtual file begin (posi-
tion 0). The following algorithms demonstrate, respectively, how the secure_create() and
the secure_open() works.

SEcube™ Development Kit - Getting Started Page 41 of 48
Document Title: SEcube™ Development Kit – L2 User Manual Release: 001
Document Classification: Private

uint16_t secure_read(SEFILE_FHANDLE *hFile, uint8_t *dataOut, uint32_t dataOut_len,
uint32_t *bytesRead)

The secure_read function masks the read() operation in Unix environment and the Read-
File() function in Windows, adding all the needed operation related to the secure file man-
agement. The number of bytes requested in clear is provided in uint32_t dataOut_len while
the actual number of read bytes is stored in bytesRead. In details the operations performed
are: starting from the position pointed by the file pointer the function extracts sequentially
all the sectors related to the requested portion of data to be read, check for its integrity by
looking on the signature, decrypts the sector and concatenate the data to be read (in clear)
in the output buffer dataOut given as argument. After that, the file pointer points after the
last byte read. A read operation issued requesting a number of bytes that is not aligned to
the sector size and is not a multiple of SEFILE_LOGIC_DATA will lead to performance degra-
dation, since it still needs to decrypt the whole sector. The implemented functionality is
shown in the following algorithm.

SEcube™ Development Kit - Getting Started Page 42 of 48
Document Title: SEcube™ Development Kit – L2 User Manual Release: 001
Document Classification: Private

uint16_t secure_write(SEFILE_FHANDLE *hFile, uint8_t * dataIn, uint32_t dataIn_len)

The secure_write function masks the write() operation in Unix environment and the
WriteFile() function in Windows, adding all the needed operation related to the secure file
management. The function write in the file the data passed in clear in the buffer. In particu-
lar, the function divides the buffer, received as argument, into sectors, encrypts and signs
each sector and write it in the specified position in the file. After this operation, the file
pointer points after the last byte written.

In this case, it has been chosen to not return the actual number of written bytes since if the
operation fails in writing dataIn_len bytes it would result as an error.

If a secure_write operation is issued requesting to write a number of bytes that is not
aligned to the sector size and is not a multiple of SEFILE_LOGIC_DATA, since it still needs to
decrypt the whole sector, will lead to performance degradation. The implemented function-
ality is shown in the following algorithm.

SEcube™ Development Kit - Getting Started Page 43 of 48
Document Title: SEcube™ Development Kit – L2 User Manual Release: 001
Document Classification: Private

uint16_t secure_getfilesize(char *path, uint32_t *position)

This function is used to get the total logic size of an encrypted file pointed by path and stor-
ing its result in position. Logic size will always be smaller than physical size given the intro-
duced overhead.

The implemented algorithm is shown in the following, where N_sector is the total number of
sectors, Size_sector is the decided size of each sector (e.g., 512 or 4096 Bytes), overhead is
equal to the size of len and signature fields, that is 32 + 2 Bytes = 34 Bytes, and Last sector
size is the value stored in len field of the last sector.

uint16_t secure_seek(SEFILE_FHANDLE *hFile, int32_t offset, int32_t *position, uint8_t
whence)

This function moves the file pointer of the specified number of bytes taking care of the ef-
fective byte of user data and jumping the bytes related to the overhead introduced by the
secure file management (i.e., header sector, signature field and data length).

To mimic the standard OS provided functions, the parameter whence is used to choose if the
user wants move the file pointer from the file beginning, from current position, or from its

SEcube™ Development Kit - Getting Started Page 44 of 48
Document Title: SEcube™ Development Kit – L2 User Manual Release: 001
Document Classification: Private

end. The pointer to position is used to store the logic value where the file pointer is after is-
suing secure_seek().

In case the destination exceeds the file size, the file is resized by adding a set of zeros suffi-
cient to reach the specified position. This function has proper mechanism to avoid the user
to jump into the header sector (which is forbidden in any way).

uint16_t secure_close(SEFILE_FHANDLE *hFile)

This function, given the file descriptor, simply closes the file without additional operations
and deallocates all its relative resources.

uint16_t secure_truncate(SEFILE_FHANDLE *hFile, uint32_t size)

This function resizes the file to the specified number of bytes uint32_t size received as ar-
gument. It takes care of the sectors management and leave the file pointer to the end of the
file (after the last byte of user data).

If the specified file is bigger than the original, sectors are filled with zeros, otherwise data in
excess are lost.

The implemented functionality is shown in the following algorithm.

uint16_t secure_ls(char *path, char *list, uint32_t *list_length)

This function is used to list the content of a directory containing encrypted files and/or di-
rectories. The function lists only those files and directories encrypted using the key ID stored
in the secure environment, by returning the decrypted name of those and the total length in
Bytes of this list.

SEcube™ Development Kit - Getting Started Page 45 of 48
Document Title: SEcube™ Development Kit – L2 User Manual Release: 001
Document Classification: Private

uint16_t secure_mkdir(char *path)

uint16_t crypt_dirname(char *dirpath, char *encDirname, uint16_t *enc_len)

secure_mkdir masks the mkdir() function in the Unix environment and the CreateDirectory()
function in Windows, but it does not implement the whole functionalities of those functions.
Since directories are created using a wrapper to the OS system call, it is not possible to
achieve a mechanism like the one employed for regular files, so it has been decided to use
this encryption scheme, leveraging to crypt_dirname(), just for the directories name: the
first 8 characters are the hexadecimal representation in ASCII of the key ID, and the rest is
obtained using the AES-256-ECB. The total length of the encrypted name is always returned
in enc_len.

The implemented functionality is shown in the following algorithm.

uint16_t secure_sync(SEFILE_FHANDLE *hFile)

This function is used in case it is needed to be sure that the OS buffers are correctly flushed
to the physical file.

SEcube™ Development Kit - Getting Started Page 46 of 48
Document Title: SEcube™ Development Kit – L2 User Manual Release: 001
Document Classification: Private

APPENDIX B - SElink APIs

This Section provides a brief overview about the SElink APIs.

For more details about their implementation, please refer to the Doxygen-based documen-
tation.

void SElink_buffer_init(SElink_buffer* buf)

This function initializes a buffer object to an empty buffer.

void SElink_buffer_ensure(SElink_buffer* buf, size_t newsize)

This function ensures the capacity for SElink buffer.

void SElink_buffer_grow(SElink_buffer* buf, size_t required)

This function ensures capacity for SElink buffer, which is expanded to the desired size (must
be a power of 2).

void SElink_buffer_free(SElink_buffer* buf)

This function disposes of the SElink buffer.

void SElink_raw_init(SElink_raw* sr)

This function initializes the SElink raw context.

void SElink_raw_reserve_keys(SElink_raw* sr, size_t nkeys)

This function reserves the memory space for keys buffer.

void SElink_raw_reserve_algorithms(SElink_raw* sr, size_t nalgorithms)

This function reserves the memory space for algorithms buffer.

void SElink_raw_add_key(SElink_raw* sr, uint32_t id, const uint8_t* fingerprint)

This function adds a key to the SElink raw context.

void SElink_raw_add_algorithm(SElink_raw* sr, uint32_t id, const uint8_t* fingerprint)

This function adds an algorithm to the SElink raw context.

void SElink_raw_clear(SElink_raw* sr)

This function disposes of keys and algorithms buffers.

void SElink_raw_d1_write(SElink_raw* sr, size_t* len, uint8_t* data)

This function writes D1 packets.

bool SElink_raw_d1_get_size(SElink_raw* sr, size_t len, const uint8_t* data, size_t* size)

This function retrieves the size of D1 packets.

SEcube™ Development Kit - Getting Started Page 47 of 48
Document Title: SEcube™ Development Kit – L2 User Manual Release: 001
Document Classification: Private

bool SElink_raw_d1_read(SElink_raw* sr, size_t len, const uint8_t* data)

This function reads D1 packets.

bool SElink_raw_d1_match(SElink_raw* sr, size_t len, const uint8_t* data)

This function finds a match in D1 packets.

void SElink_raw_d2_write(SElink_raw* sr, size_t* len, uint8_t* data)

This function writes D2 packets.

bool SElink_raw_d2_read(SElink_raw* sr, size_t len, const uint8_t* data)

This function reads D2 packets.

void SElink_raw_s1_write(SElink_raw* sr, size_t* len, uint8_t* data)

This function writes S1 packets.

bool SElink_raw_s1_read(SElink_raw* sr, size_t len, const uint8_t* data)

This function reads S1 packets.

bool SElink_raw_s1_match(SElink_raw* sr, size_t len, const uint8_t* data)

This function finds a match in S1 packets.

void SElink_raw_h_write(SElink_raw* sr, uint8_t* header, size_t data_size)

This function writes data packet headers.

void SElink_raw_h_read(SElink_raw* sr, const uint8_t* header, size_t* data_size)

This function reads data packet headers.

void SElink_raw_fingerprint(const uint8_t* salt, size_t len, const uint8_t* data, uint8_t*
fingerprint)

This function generates raw fingerprints.

uint16_t SElink_raw_secube_import(SElink_raw* sr, se3_session* s, uint16_t key_size,
uint16_t algo_type)

This function imports keys and algorithms from the device.

size_t SElink_raw_packet_size(size_t data_size)

This function retrieves the expected packet size.

void SElink_init(SElink* ctx, se3_session* s)

This function initializes the SElink context.

void SElink_destroy(SElink* ctx)

This function destroys the SElink context.

SEcube™ Development Kit - Getting Started Page 48 of 48
Document Title: SEcube™ Development Kit – L2 User Manual Release: 001
Document Classification: Private

uint16_t SElink_duplex_write_request(SElink* ctx, SElink_buffer* buf)

This function writes duplex requests.

uint16_t SElink_duplex_get_request_size(SElink* ctx, SElink_buffer* buf, size_t* re-
quest_len)

This function retrieves the length of duplex request packets.

uint16_t SElink_duplex_reply(SElink* ctx, SElink_buffer* buf)

This function replies to duplex requests.

uint16_t SElink_duplex_read_response(SElink* ctx, SElink_buffer* buf)

This function reads duplex responses.

uint16_t SElink_simplex_write_invite(SElink* ctx, SElink_buffer* buf)

This function writes simplex invites.

uint16_t SElink_simplex_read_invite(SElink* ctx, SElink_buffer* buf)

This function reads simplex invites.

uint16_t SElink_write(SElink* ctx, size_t data_len, const uint8_t* data, SElink_buffer* buf)

This function writes data packets.

uint16_t SElink_read_header(SElink* ctx, size_t data_len, const uint8_t* data, size_t* re-
maining_bytes)

This function reads data packets’ headers.

uint16_t SElink_read(SElink* ctx, size_t data_len, const uint8_t* data, SElink_buffer* buf)

This function reads data packets.

