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Abstract. Difficulties with accessing device content or even the device
itself can seriously hamper smartphone forensics. Mobile cloud storage,
which extends on-device capacity, provides an avenue for a forensic collec-
tion process that does not require physical access to the device. Rather,
it is possible to remotely retrieve credentials from a device of interest
through undercover operations, followed by live cloud forensics. While
technologically appealing, this approach raises concerns with evidence
preservation, ranging from the use of malware-like operations, to linking
the collected evidence with the physically absent smartphone, and pos-
sible mass surveillance accusations. In this paper, we propose a solution
to ease these concerns by employing hardware security modules to pro-
vide for controlled live cloud forensics and tamper-evident access logs. A
Google Drive-based proof of concept, using the SEcube hardware secu-
rity module, demonstrates that D-Cloud-Collector is feasible whenever
the performance penalty incurred is affordable.

Keywords: Cloud storage forensics · Digital evidence preservation ·
Right to privacy · Hardware security modules · Tamper-evident logs

1 Introduction

Nowadays, smartphones store sufficient data about their owners to the extent
that they can provide a single source of digital forensic evidence to solve inci-
dents involving criminal behaviour [19]. On the flip side, the same sophisticated
technology that comes in handy for investigators can also be used to block access
to digital evidence [5]. Locked/encrypted or even missing/damaged devices are
a case in point. Firmware manipulation combined with device rooting, or else
hardware-level acquisition, provide some options to investigators. Yet these tend
to be very intrusive or else cannot fully solve the encrypted content problem
respectively [15]. In the case of the San Bernardino terror attack1, a spectacu-
lar stand-off between law enforcement and technology vendors ensued. While in
1 https://www.insidescience.org/news/looming-end-smartphone-company-law-
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this case a third party forensics tool vendor came to the rescue, such solutions
remain largely specific to device models and operating system versions [13,17],
and taken out by security updates.

In recent years the mobile security landscape has witnessed a significant
increase in malware exploiting social engineering tactics [25], as well as advanced
software exploitation able to pull off successful credentials attacks of sorts [17].
Once deployed in a sufficiently controlled manner, the same malware techniques
could offer a remote solution that does not even require physical access to smart-
phones. The key enablers of this approach comprise mobile cloud storage services
and the application programmer interfaces (APIs) exposed by them (e.g. Google
Drive for Developers2 and the CloudKit framework for Apple iCloud3). To com-
pensate for physical storage constraints, smartphone vendors offer cloud storage
services (for file storage and app data backups) that integrate seamlessly with
the mobile operating system (OS) along with a storage quota for free.

Once retrieved stealthily during an undercover operation, credentials can be
used by a cloud forensics tool that consumes cloud storage APIs. Akin to the
classic telephone tapping context, investigators can present a probable cause to
believe that a remote undercover operation could help in solving a serious crime,
such as drug trafficking, money laundering, or terrorism [21]. In this case, the
arrangement executes a remote credentials theft attack on the target device.
Similar to the classic phone context, however, law enforcement agencies are held
to a higher standard of operational integrity due to the intrusive nature of such
operations. Recent accusations of mass surveillance by governments using the
Pegasus spyware have caused an uproar4, invoking a breach of the right to pri-
vacy as described by the Universal Declaration of Human Rights Article 12 [20],
and associated laws, e.g. GDPR in the EU.

1.1 Research Problem

A universally accepted mechanism to preserve evidence, thereby helping in hav-
ing it admissible for court proceedings, is the forensic chain of custody (CoC) [4].
A comprehensive CoC involving digital investigation is required, such that for
any given evidence, the following is included with proper authentication using
digitally signed hashes [6]: i. the custodian (e.g. first responders, case investiga-
tors), ii. details of the evidence itself with proper identification (e.g. phone IMEI
or storage image checksum), iii. relevant case details, iv. the temporal informa-
tion associated with the evidence and custody, as well as v. the spatial data
related to the evidence location. Overall, the CoC should be suitable to track
the entire lifecycle of evidence as proof of its integrity.

In our case (see Fig. 1), the CoC is also burdened with demonstrating proper
usage of the remotely retrieved credentials. In particular, investigators need sup-
port in establishing that credentials usage falls within the parameters of not
2 https://developers.google.com/drive.
3 https://developer.apple.com/documentation/cloudkit/.
4 https://theconversation.com/spyware-why-the-booming-surveillance-tech-

industry-is-vulnerable-to-corruption-and-abuse-164917.
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Fig. 1. D-Cloud-Collector : reconciling mobile cloud storage evidence obtained via
remote undercover operations with forensic chains of custody.

impinging on the target’s right to privacy. One further issue concerns compat-
ibility with existing CoC. In the case of mobile forensics, typical CoC entries
correspond to a physical device or part thereof, e.g. sd card. In this manner, the
CoC entry for the device links it to the digital image, while any extracted evi-
dence relates to the authenticated digital image. However, the stolen credentials
approach does not fit this generally accepted procedure. Instead, in this case,
the credentials do not immediately associate with the device in question. Digital
evidence is collected through live forensics rather than forensic imaging of device
storage. Device confiscation is not even required.

1.2 Contributions

In this paper, we propose D-Cloud-Collector (DCC), a live forensics solution for
mobile cloud storage that reconciles with CoC requirements: 1a. Credentials are
obtained through an undercover operation only after approval by the relevant
authorities. 1b. All access to cloud evidence is fully authenticated and logged
through the use of a removable Hardware Security Module (HSM), e.g. a USB
token, which also provides 1c. A one-to-one mapping between the acquired evi-
dence and the absent mobile device. All this whilst ensuring 2. Security and 3.
Practicality in terms of performance, although at the cost of additional evidence
collection time.

The scope of work presented in this paper is to validate the HSM’s central
role in DCC. This hardware component provides secure storage and usage of
the authorization tokens and symmetric keys needed for the secure access of
cloud APIs. Additionally, a secure hash-based primitive implemented inside the
HSM enables tamper-evident cloud API access to logs. Ancillary features already
widely used in security solutions complete the full DCC picture. Specifically, the
HSM’s tamper-evident features, CPU protection rings, and anti-code injection
module loaded by the forensic collection tool on the investigator’s workstation
protect the security of the HSM itself. We defer their in-depth treatment to
subsequent work.
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The key contributions of this work, therefore, aim to answer the following
research question: “How can HSMs be utilised as a basis to collect evidence from
mobile cloud storage, through stealthily-retrieved credentials, in a manner that is
consistent with evidence preservation and the right to protect personal data?” To
this end we provide: 1. A characterization of the target use case and a conceptual
description of DCC (Sect. 4). 2. A proof-of-concept implementation of the HSM
component of DCC based on the SEcube chip [26] (Sect. 5). 3. A Google Drive
case study (Sect. 6).

2 Background

Credentials Theft Vectors on Smartphones. Spyware targeting Android [25] and
iOS [11] smartphones alike propagate in the form of trojan/infected versions
of legitimate apps. Statistics show that detection mechanisms employed by app
stores let through a significant number of spyware samples [9]. While tech-savvy
users may get suspicious by the sheer amount of permissions required by these
rogue apps during the installation process, a good number of users do fall prey to
their deceptive tactics [27]. Even more so, certain threat vectors allow trojan apps
not to look overly suspicious [22], bypassing the need for sensitive permissions or
requiring any device rooting/jailbreaking. The result is highly stealthy malware
that goes unnoticed by victims for long periods.

OAuth2. DCC relies on cloud service providers supporting an authorization
mechanism that allows account owners to delegate privileges to third party
apps. While not tied to a specific mechanism, OAuth2 is a widely adopted
standard framework [7], and our DCC implementation assumes it. It presup-
poses HTTPS and the consequently derived security services from the underpin-
ning TLS1.3. The critical step in OAuth2 is app-flow redirection through a web
browser requesting user content for the third-party app, which is granted access
to the user’s cloud service account. Following successful third-party application
and user permission granting, the application receives an access token to be pre-
sented by all subsequent access requests. A refresh token is also obtained and is
used whenever a new access token is needed following its expiration.

Hardware Security Modules. Hardware security modules aim to make up for
the limitations faced by software-only protection mechanisms. While secure ele-
ments, trusted platform modules (TPM) and Trusted Execution Environments
(TEE) are bound to specific hardware, HSMs offer a more flexible solution
[8]. These devices typically take the form of high-performance plugin cards5

or removable external devices6; their primary application being secure cryptog-
raphy implementation (standard PKCS#11 [24] is dedicated for this purpose).

5 https://cpl.thalesgroup.com/encryption/hardware-security-modules/general-
purpose-hsms.

6 https://www.secube.blu5group.com/products/usecube-bundle-including-5-
usecube-tokens-and-1-devkit/.

https://cpl.thalesgroup.com/encryption/hardware-security-modules/general-purpose-hsms
https://cpl.thalesgroup.com/encryption/hardware-security-modules/general-purpose-hsms
https://www.secube.blu5group.com/products/usecube-bundle-including-5-usecube-tokens-and-1-devkit/
https://www.secube.blu5group.com/products/usecube-bundle-including-5-usecube-tokens-and-1-devkit/
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3 Related Work

Along with the analysis of messaging apps, the importance of mobile forensics
in criminal investigations involving the use of cloud storage services has already
been acknowledged [3]. While cloud storage forensics has been explored from
multiple aspects, to the best of our knowledge, our work is the first to focus
specifically on mobile cloud storage forensics, where the collection process lever-
ages stealthily obtaining credentials. This collection method effectively replaces
the conventional confiscate-unlock-image-collect-analyze procedure [15]. DCC’s
role is restricted to the collection phase, replacing phone storage imaging with
cloud storage collection using the obtained credentials. The need for device con-
fiscation and unlocking is replaced by remote installation of undercover inves-
tigation software. Evidence examination and the associated CoC can proceed
similarly to any phone-present approach, possibly even through a distributed
CoC based on a distributed ledger [12,14].

DCC could also extend the role of the undercover operation software beyond
credentials retrieval and make it collect evidence from cloud storage. This app-
roach would avoid the need for an HSM to protect the retrieved credentials from
dishonest investigators. Instead, the cloud storage evidence could be registered
directly into a CoC by the undercover tool, with the integrity of this operation
safeguarded by blockchain-backed evidence storage [10]. However, this approach
entails a significant extension of the covert operation. When considering the com-
putationally intensive evidence collection operation, this approach could severely
increase the chance of giving away the entire operation.

The Cloud-Forensics-as-a-Service model (CFaaS) [18] is a cloud forensic pro-
cess model that requires a prior agreement between the cloud service providers
and consumers. The model expects both parties to synchronise on both sides’
forensic data collection process, with the correlation of evidence collected on each
side carried out during a subsequent analysis stage. The bilateral agreement is
finalised during a cloud forensic readiness stage. A similar approach [1] that
focuses on cyberattacks targeting mobile cloud apps goes as far as requiring the
synchronisation of client and server-side forensic readiness. With cloud service
providers’ provision of log services for forensic investigation purposes, concerns
related to the possibility of malicious behaviour also abound. In this regard,
logging services must be hardened against dishonest cloud users, providers, and
investigators [28]. Threats to secure logging comprise scenarios where the three
entities are individually malicious or collude. Public key cryptography ensures
confidentiality, while chained hashes of log entries along with proofs of past logs
ensure integrity. On its part, DCC employs a similar log hashing scheme in the
HSM to ensure tamper-evident logs. On the other hand, OAuth2 tokens for
evidence retrieval ensure that cloud storage from other accounts remains inac-
cessible. Furthermore, read-only tokens should be prioritized whenever provided,
thus protecting evidence integrity.

In contrast, the approach taken in DCC reflects the most likely scenario
occurring during a criminal investigation, where no prior agreements exist, nor
is any collaboration sought from the cloud provider. This scenario is not unique
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Fig. 2. A HSM-centric approach to DCC.

to DCC, and in fact, some consumer-driven cloud forensic solutions that address
different settings than the one studied in this work have already been explored
[16]. The motivating factors are several. Besides the organisational challenge
otherwise entailed, legal obstacles also loom [22]. Existing mutual legal assis-
tance treaties are considered inadequate for the cross-border sharing of cloud
evidence. Legal frameworks proposed to address this scenario have been widely
criticised for violations of international law and for not being sufficiently sensi-
tive to human rights. DCC focuses on the technical aspects of cloud forensics,
providing means through which investigators can demonstrate the case-relevant
usage of the stealthily obtained credentials.

4 Use Case and Conceptual Design

The assumed context within which DCC-based tools are to operate is as follows:

1. A bilateral agreement between the cloud service provider and the investigators
is unavailable or perhaps not even possible.

2. An undercover investigation software has been implanted onto the target’s
smartphone using social engineering or software exploitation for delivery. Sub-
sequently, it obtains the cloud credentials (user & password) while suppressing
any alerts related to their usage by investigators.

3. A proxy server placed between the investigator’s workstation and the cloud
service provider, which doubles as a log management server, might offer a
solution. Yet this arrangement is not deemed fully compatible with CoC prac-
tices unless sufficient resources are available to dedicate servers per case, only
releasing them on case closure.

This last assumption merits further elaboration. In this hypothetical setup,
during an initialisation stage, the cloud credentials are supplied directly to the
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proxy server and subsequently exchanged for authorization tokens. From this
point onward, an investigator workstation collects the related cloud evidence,
performing all API requests through this proxy server, with the server adding the
authorization tokens and performing de/encryption. Responses take the reverse
route with the authorization tokens stripped from responses after decryption
and ultimately delivering collected evidence to the investigator. The credentials
are only used directly for a very brief period, after which they can be disposed
of for further integrity. If the authorization tokens never leave the proxy server
in plaintext form, there is no other way to make use of them. Similarly, access
request logs are managed solely by the proxy server and are considered tamper-
proof. The digitally signed access logs are to be registered with the CoC, thereby
considered authentic and comprehensive of all cloud storage accesses.

However, the proxy server approach is difficult to reconcile with CoC require-
ments concerning linking the access logs and associated mobile cloud evidence
with the absent smartphone. Suppose it was possible to dedicate a physical
proxy server per case. In that scenario, it could be considered a replacement of
the physically missing smartphone, with the collected cloud evidence and access
logs replacing the phone’s storage forensic image. Yet this comes across as an
expensive proposition, especially for long-running cases. The idea of a proxy
device that replaces the smartphone under custody is a concept we would like
to stick to, but at the same time, it also has to be cost-effective. DCC proposes
to use a dedicated HSM, referred to here as the DCC-HSM, as a much cheaper
option than a dedicated proxy server. The tamper-evident features expected of
any HSM combined with local-only access present the restricted attack surface.

As shown in Fig. 2, the first two DCC stages, permission granting and token-
authorized access mirror the proxy server-based approach. The DCC-HSM is
attached locally to the investigator workstation, at the expense of offering
reduced computational power compared to a fully-fledged server. Access logs also
become prone to tampering prior to digitally signing them. An additional secure
hash-based operation is therefore required and is employed during an additional
log verification stage. The collected evidence, along with tamper-evident access
logs, offer a replacement for forensic smartphone storage images. Thereby, the
DCC-HSM provides a physical substitute for the missing phone.

5 Proposed Approach—D-Cloud-Collector (DCC)

D-Cloud-Collector (DCC) is a live forensics solution for mobile cloud storage
obtained through the undercover retrieval of credentials from smartphones.

5.1 DCC Architecture

Figure 3 presents how DCC’s main components are used during the first two
stages of operation. The start of the ‘permission granting’ stage assumes that
a session key has already been negotiated over TLS and is solely stored inside
the HSM, referred to as DCC-HSM. Once the ‘permission granting’ procedures
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Fig. 3. The D-Cloud-Collector (DCC) components and their involvement in the first
two stages of operation. The central role of the hardware security module (DCC-HSM)
is noteworthy.

begin, the DCC administration tool forwards a cloud API authentication request
to the DCC-HSM. The request is first encrypted with the stored symmetric key
and returned to the administration tool. Subsequently, it is forwarded to the
cloud web server as HTTPS traffic, causing the previously discussed OAuth2
flow redirection and is the only point in time at which the investigator provides
the stolen user/password. The corresponding encrypted response is sent back to
the DCC administration tool (through an embedded web server) containing the
OAuth2 refresh/access tokens. It is the DCC-HSMs responsibility to decrypt the
response, extract the tokens and store them on the HSM, while at the same time
replacing them with placeholder tokens inside the plaintext response. The avail-
ability of the OAuth2 tokens—which never leave the DCC-HSM in plaintext—is
the key prerequisite for the second stage.

The token-authorized access stage represents all file download requests made
to the cloud API server using the previously obtained OAuth2 tokens, renegotia-
ting further TLS session keys as required. All API requests pass through the
DCC-HSM for replacing the placeholder tokens with the actual ones, with sub-
sequent encryption. Most responses will contain the downloaded evidence and
which ones are to be decrypted again by DCC-HSM. During this second stage,
any cloud forensics tool which is compatible with DCC instantiates the adminis-
tration tool, i.e. a tool that can implement the flows shown in Fig. 3, with DCC-
HSM integration through a host library being a key requirement. Throughout
both stages, all encryption requests also result in the computation of an authen-
tication tag that depends on all previous encrypted requests. In this manner,
the authenticity of the cloud access log, external to the HSM, can be verified.

DCC also carries several security requirements to protect the OAuth2 tokens
inside the DCC-HSM, i.e. beyond the fact that the HSM needs to be tamper-
evident. The key requirement comprises TLS session keys to be immediately
scrubbed from memory by the DCC administration and DCC-compatible cloud
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Fig. 4. DCC-HSM’s lifecycle.

forensics tool. By doing so, a malicious DCC end-user never gets the opportu-
nity to decrypt ciphertext containing the access tokens. Besides requiring tool
conformity, this requirement also entails tool hardening to protect from tool tam-
pering, thereby fending off any future accusations that some form of foul-play
was ever involved when handling cloud storage credentials. The first ancillary
component comprises operating system (OS)-level access controls that prohibit
non-privileged OS users from debugging program memory, or else to carry out
process injection to leak session keys. Since process-injection can also happen
through software bug exploitation, an additional anti-process injection module
is also needed. Given that all the ancillary components secure the DCC-HSM,
we choose to focus on describing this central component first for the scope of
this paper. An in-depth treatment of the ancillary components makes sense only
once the design of the DCC-HSM is thoroughly explored. We, therefore, start
by delving deeper into the DCC-HSM’s functionality.

5.2 The DCC-HSM Component

Figure 4 illustrates the DCC-HSM’s lifecycle as a state machine. The top-level
states correspond to the state transitions that take an HSM without any firmware
to an operational state that is flashed with a binary image. Initially, the DCC-
HSM is operated upon by the DCC administration tool. Specifically, starting
with an empty device in the HSM ERASED state, the HSM is flashed with software
and transitions to HSM FLASHED. At this point, the DCC-HSM device exposes
its services through the host library. Factory Init() is always the first service
to be called where it initialises device parameters not strictly related to DCC
functionality, e.g. device PINs and serial numbers. Once called, the DCC-HSM
transitions into HSM INIT. This top-level state is programmatically irreversible,
implying DCC-HSM’s strict association with a specific case, effectively replacing
the physically missing device.

Once in HSM INIT the DCC-HSM is ready to take part in the three DCC stages,
providing access to its services depending on the current HSM INIT sub-state.
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Initially, only the DCC MANAGE state is accessible via DCC ManagerLogin(). Still
within the context of the DCC administration tool, once supplied with the correct
device administrator PIN, this operation takes the device to the HSM MANAGE state,
thereby setting DCC-specific parameters. While logged in this device in manager
mode, it is possible to set the OAuth2 token placeholders and reserve space for the
actual token strings on the device’s persistent memory. Furthermore, the initial
authentication tag value is set. HSM HSMInit() is the operation responsible for all
these tasks. On a newly flashed device, this operation is called automatically with
default values, i.e. besides the possibility of being called explicitly with specific
values. This means that from the point of calling Logout() onward, the device
is ready for DCC participation (see Fig. 3). The DCC USE state requires a nor-
mal user login (DCCUserLogin()). In this state, TLS-negotiated session keys are
provided through SetSessionKey(). API request/response en/decryption, and
the associated access token storage and placeholder replacement services are pro-
vided by EncEmbed() and DecStore(). Both the ‘permission granting’ and the
‘token-authorized access’ DCC stages operate in the DCC USE state. On comple-
tion of the first stage, the DCC-HSM stores the OAuth2 refresh and access token
strings. These tokens are used by both the EncEmbed() and DecStore() opera-
tions to replace, or be replaced by, the placeholder tokens respectively. Assuming
that the stealthily obtained passwords are safely disposed of, in this configuration,
the DCC-HSM becomes the only medium through which the mobile cloud storage
can be accessed.

Loaded with a refresh/access token pair, whose presence (not values) is ver-
ifiable through ListTokens(), the device is now ready to be operated upon by
the DCC-compatible cloud forensics tool. The next time that a cloud evidence
search-and-download procedure is needed, a call to DCCUserLogin() takes the
DCC-HSM back to the DCC USE state, and following calls to SetSessionKey()
as necessary, a sequence of EncEmbed() and DecStore() operations are invoked
to securely perform authorized requests followed by file downloads. The last
two operations are also responsible for updating the internally-stored authen-
tication tag. Each tag is computed out of the sequence of web API requests,
comprising the entire plaintext HTTP request headers and any payload data.
Whenever requests contain OAuth2 tokens, the tag is computed using the place-
holder tokens rather than the actual token strings. Otherwise, it wouldn’t be
possible to verify the externally-stored logs, which should not have access to the
token strings but only the placeholders. For this reason, the external log ver-
ification procedure must adhere to the following constraints: i. It synchronises
the initial authentication tag with DCC-HSM, and ii. It processes an access log
corresponding to the concatenation of plaintext requests as sent to the DCC-
HSM for encryption. Tag computation is based on the hash extend algorithm,
universally employed by TPMs [2], where for the next access log entry, a new
tag t′ is computed out of the previous tag t as: t′ ← hash(t || log entry).

Whenever access log verification is required (DCC stage 3), DCC
AuditLogin() has to be called by the DCC administration tool to transition the
DCC-HSM to the DCC AUDIT state. This transition represents an auditor login.
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In this state, it becomes possible to call the GetTag() service, which retrieves the
last computed tag. Likewise, the access log generated by the cloud forensics tool
is passed on to the DCC administration tool. It computes an external tag start-
ing with the same initial tag. Only a pair of matching DCC-HSM/external tags
constitutes proof of authenticity. On the other hand, a non-match event indicates
a tampered-with log. Furthermore, since a successful ‘permission granting’ DCC
stage leaves the DCC-HSM the only way to access the corresponding mobile
cloud storage, the access log is also deemed comprehensive.

6 DCC-HSM Proof of Concept Evaluation

6.1 SEcube HSM

We prototyped DCC-HSM on the SEcube chip [26]. We chose this chip due to the
tamper-evident features of its embedded STM32F4 microcontroller, a very low
power ARM Cortex M4 RISC 180 MHz CPU, with on-chip 256 KB SRAM and
2 MB flash. Importantly, any firmware developed on its corresponding developer
board is immediately transferable to the USEcube™ USB Token7 priced approxi-
mately just over €100. Furthermore, this multi-chip module also stacks a Lattice
MachXO2-7000 device and an EAL5+ certified secure element. The two com-
ponents carry potential for future enhancements for hardware acceleration and
authenticated firmware updates and private-key binding, respectively. The DCC-
HSM firmware is developed on top of the OpenSDK software libraries8, compris-
ing a device-side firmware and host-device libraries that communicate over the
USB mass storage device class. WolfCrypt’s ChaCha20/Poly1305 authenticated
stream cipher was integrated with the firmware using STM32CubeMX to pro-
vide TLS1.3-compatible authenticated encryption. This cipher offers a popular
option for hardware lacking AES acceleration. The complete DCC-HSM services
(Fig. 4) implemented in the SEcube’s firmware are exposed as additions to the
OpenSDK’s host libraries. Logic related to the DCC administration and cloud
forensics tools uses the Python bindings for the Drive API (V3). All sources
experiment (discussed next) files are available for download9.

6.2 Google Drive Case Study

The Google Drive app is available for both Android and iOS devices, providing
15 GB of storage10. Aspects of the three DCC stages (Fig. 2) follow.

7 https://www.secube.blu5group.com/products/usecube-bundle-including-5-
usecube-tokens-and-1-devkit/.

8 https://github.com/SEcube-Project/SEcube-SDK.
9 https://github.com/mmarrkv/DCC.

10 https://play.google.com/store/apps/details?id=com.google.android.apps.docs.

https://www.secube.blu5group.com/products/usecube-bundle-including-5-usecube-tokens-and-1-devkit/
https://www.secube.blu5group.com/products/usecube-bundle-including-5-usecube-tokens-and-1-devkit/
https://github.com/SEcube-Project/SEcube-SDK
https://github.com/mmarrkv/DCC
https://play.google.com/store/apps/details?id=com.google.android.apps.docs
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Fig. 5. DCC’s permission granting stage with a Google OAuth 2.0 endpoint.

Stage 1: Permission Granting. The following snippet shows the (redacted) JSON
store associated with the DCC administration and cloud forensics tools.

{” i n s t a l l e d ” :
{” c l i e n t i d ” : ”<sn ip . . . > ” ,
” p r o j e c t i d ” : ”dcc−hsm” ,
” auth ur i ” : ” h t t p s : // accounts . goog le . com/o/oauth2/auth” ,
” t oken u r i ” : ” h t t p s : // oauth2 . goog l e ap i s . com/ token” ,
” au th p r ov i d e r x 5 0 9 c e r t u r l ” : ” h t t p s : //www. goog l e ap i s . com/oauth2/v1/

c e r t s ” ,
” c l i e n t s e c r e t ” : ”<sn ip . . . > ” ,
” r e d i r e c t u r i s ” : [ ” u r n : i e t f : w g : o a u t h : 2 . 0 :oob ” , ” h t tp : // l o c a l h o s t ” ]}}

In particular, the application is registered to use the native application
OAuth2 flow (installed), application name (project id) and credentials
(client id, client secret), the authorization service to which they are to
be sent (auth uri), and http://localhost, specifying that the access tokens
will be sent to a local web server. Figure 5 includes screen captures from the
permission granting process, involving flow redirection to a web browser (step
1) where the stolen password will have to be used, granting access to DCC-HSM
(step 2), and receipt of an authorization code by the locally spawned web server
(step 3).

The authorization code is intended for the OAuth2 token service (token uri),
with the following request/response snippets showing the receipt of both refresh
and access tokens. Following response decryption, actual token strings remain
on the HSM with the administration/forensics applications only getting access
to the placeholder strings PLC ACC* and PLC RFSH*11. The scope of the tokens
was chosen to provide read-only access to the Google Drive account concerned,
further strengthening evidence preservation.

11 Stale Google tokens are actually used in the implementation.
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POST ht tp s : // oauth2 . goog l e ap i s . com/ token HTTP/1.1
Host : oauth2 . goog l e ap i s . com <sn ip . . .>
HTTP/1.1 200 OK<sn ip . . .>
{ ” acc e s s t oken ” : ”PLC ACC<sn ip . . . > ” ,

” e x p i r e s i n ” : 3599 ,
” r e f r e s h t ok en ” : ”PLC RFRSH<sn ip . . . > ” ,
” scope ” : ” h t t p s : //www. goog l e ap i s . com/auth/ dr ive . readonly ” ,
” token type ” : ”Bearer ”

Stage 2: Token-Authorized Access. The second stage involves the bulk of
the evidence collection process, yet it is the most straightforward stage
from a DCC point-of-view. Web API endpoints corresponding to stored files
(drive/v3/files/*) are accessed with the placeholder tokens placed inside the
authorization HTTP header. Once forwarded to the DCC-HSM, actual token
strings replace placeholders followed by encryption as per the following request
snippet, with the ensuing encrypted responses undergoing the reverse process.

GET ht tp s : //www. goog l e ap i s . com/ dr ive /v3/ f i l e s /1
Xay4B uRSdxpmDJypmYwJi8gro1bR7B1? a l t=media HTTP/1.1

Host : www. goog l e ap i s . com
x−goog−api−c l i e n t : gdc l / 2 . 2 8 . 0 gl−python /3 . 8 . 5
range : bytes=0−104857600
au tho r i z a t i o n : Bearer PLC ACC< . . . sn ip . . .>

Stage 3: Log Verification. The last stage of DCC needs to compare the currently
stored authentication tag with an external recomputation of the tag over the
access log. The key requirement is that the external computation synchronizes
its initial tag with the HSM’s. The log itself comprises the exact same sequence
of plaintext HTTP requests sent to the HSM, i.e. containing the placeholder
tokens instead of actual strings, as follows:

POST ht tp s : // oauth2 . goog l e ap i s . com/ token HTTP/1.1
Host : oauth2 . goog l e ap i s . com<sn ip . . .>
GET ht tp s : //www. goog l e ap i s . com/ dr ive /v3/ f i l e s ?q=mimeType%3D%27

app l i c a t i on%2Fvnd . google−apps . f o l d e r%27+and+name+%3D+%27
f i l e c o l l e c t i o n%27&pageSize=10& f i e l d s=nextPageToken%2C+f i l e s %28id
%2C+name%29&a l t=j son HTTP/1.1

Host : www. goog l e ap i s . com<sn ip . . .>
au tho r i z a t i o n : Bearer PLC ACC<sn ip . . .>
GET ht tp s : //www. goog l e ap i s . com/ dr ive /v3/ f i l e s /1

Xay4B uRSdxpmDJypmYwJi8gro1bR7B1? a l t=media<sn ip . . .>
au tho r i z a t i o n : Bearer PLC ACC<sn ip . . .>

If the access log is in order, log verification returns a matching authentica-
tion tag. However, by property of cryptographic hashes, even a single character
modification would result in a completely different tag, exposing tampering.
Therefore, it is also essential that the external verification procedure uses the
same hash while ensuring no discrepancies between the implementations. For
our case study, both the SEcube firmware and the log verification routine make
use of WolfCrypt’s SHA3-256, resulting in a matching tag for intact logs as per
the following:
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>>: Device audit in p rog r e s s
>>: Tag va l u e : 8d 88 42 1 f e4 9e <sn ip . . .>
>>>>>Compute Tag value out s ide DCC−HSM

Tag va l u e : 8d 88 42 1 f e4 9e <sn ip . . .>
>>>>>Comparison + v e r d i c t : MATCH

6.3 Security Analysis

Besides the tamper-evident registers supported by the chosen HSM and the
additionally required DCC modules needed to protect session keys from
malicious users (see Sect. 5.1), the firmware itself may still introduce secu-
rity holes. A case in point concerns our first attempt at optimizing the
implementation of DecStore(). This version assumed that token replace-
ment is only needed for JSON-formatted payloads returned by calls to
https://oauth2.googleapis.com/token. Yet this approach opened up the pos-
sibility for an attack that re-injects an HSM-encrypted request, now containing
the actual token string, back to the HSM and have it decrypted, as shown by
the following listing:

>>: Decryption in p rog r e s s
GET ht tp s : //www. goog l e ap i s . com/ dr ive /v3/ f i l e s ?q=mimeType%3D%27

app l i c a t i on%2Fvnd . google−apps . f o l d e r%27+and+name+%3D+%27
f i l e c o l l e c t i o n%27&pageSize=10& f i e l d s=nextPageToken%2C+f i l e s %28id
%2C+name%29&a l t=j son HTTP/1.1<sn ip . . .>

au tho r i z a t i o n : Bearer ya29 . a0ARrd<sn ip . . .>

Removal of this optimisation fixed the issue even though this cat-and-mouse
scenario, to which every software is prone, is far from closed.

6.4 Performance Analysis

Our proposal trades a fully-fledged proxy server for a low-cost removable HSM,
which incurs a performance penalty. Yet, here we are speaking about a collec-
tion process carrying no real-time requirements, i.e. besides completing evidence
collection within a reasonable time frame. We measured the processing time
required by the HSM to process all necessary requests involving evidence rang-
ing from 1.5–15 GB, thus covering Google Drive’s free storage capacity in 10
steps. For experiment repeatability, we obtained a packet capture of the traffic
through a web proxy and conducted all measures in an offline manner. This
web proxy setup entailed patching Python’s httplib2 and requests modules
to deactivate X.509 certificate verification. Figure 6 shows a plot of the measure-
ments, including both un/patched versions of the firmware, as well as a baseline
comprising the hpenc12 fast encryption tool and which maximises the utilisation
of the 8-core Intel c© Core™ i7-10700 CPU @ 2.90 GHz used for experimentation.

Measurements show a quasi-linear increase in processing times for both firm-
ware versions, ranging 0.9/1.2–7.4/8.1 h for un/patched versions. Repeated runs

12 https://github.com/vstakhov/hpenc.

https://github.com/vstakhov/hpenc
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Fig. 6. DCC-HSM processing times for the 1.5–15 GB evidence range.

registered very little dispersion, with σ = 19.1/28.9 s, for un/patched versions
with 1.5 GB evidence. The baseline’s impressive handling of the increase in
computation load is a stark reminder of the cost of security, providing controlled
cloud storage access and log integrity with CoC compatibility.

7 Conclusions and Future Work

This paper proposed DCC: a live forensics solution for mobile cloud storage
obtained through the undercover retrieval of smartphone credentials. In what
follows, we revisit the aims and outline future directions.

CoC Requirements. DCC needs to provide evidence preservation and address
mass surveillance concerns through compatibility with CoC requirements. The
SEcube proof of concept for Google Drive emphasises the central role of the
HSM in being a physical replacement for the missing smartphone. The HSM
links directly to the stealthily retrieved passwords by securely storing the cor-
responding OAuth2 tokens. Being the only source for these tokens also pro-
vides controlled access to cloud storage. Therefore, the computed authentication
tags go beyond detecting access log tampering to prove comprehensiveness. CoC
entries can therefore proceed with a DCC-HSM-centric approach.

Security. Having validated the functionality aspect of the DCC-HSM through
the Google Drive case study, the focus must now shift to security. Besides further
security analysis of the current DCC-HSM, the missing DCC components that
provide session key protection must be looked into. In this regard, a tamper-
evident approach to system logs [23], along with a seamless process to harden
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stock cloud forensics tools against loading of additional code widely used by
modern web browsers13 are both in the pipeline.

Practicality. Our first DCC-HSM prototype demonstrates that DCC is practical
even though the additional evidence collection time is a factor. Performance
results show that the SEcube HSM can process 15 GB of evidence within a single
working day. Yet provisions may be necessary in case of evidence tampering
suspicions from the device owner’s end, e.g. use the stolen password to lock
owners out of their account through a password change. Avenues for speeding
up the process are still available. For example, in SEcube’s case, we still haven’t
leveraged the FPGA, while an upgrade to USB 3.0 can provide an immediate
performance gain. Another issue may be posed by two-factor authentication
(2FA) that would block DCC in its first stage. DCC can be updated to directly
retrieve the OAuth2 tokens, although this enhancement mainly depends on what
is possible in terms of undercover credentials theft. Alternatively, an extended
permanence of the undercover operation tool can hijack all 2FA operations.

Final Remark. Besides the evidence preservation role, CoC compatibility is also
needed for the ‘right to protect personal data’ purposes. From a technical per-
spective, the DCC proposition includes tamper-evident log controls, specifically
to allow investigators to demonstrate the case-relevant usage of the stealthily
obtained credentials. However, this aspect goes beyond the technical means of
CoC compatibility. Once the security-related components of DCC are also in
place, the focus can shift to legal matters, with field studies becoming necessary.
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