
Journal of Object Technology | RESEARCH ARTICLE

RV-TEE-Based Trustworthy Secure Shell Deployment:
An Empirical Evaluation

Axel Curmi, Christian Colombo, and Mark Vella
Department of Computer Science, University of Malta, Malta

ABSTRACT Incorrect cryptographic protocol implementation and malware attacks targeting its runtime may lead to insecure
execution even if the protocol design has been proven safe. This research focuses on adapting a runtime-verification-centric
trusted execution environment (RV-TEE) solution to a cryptographic protocol deployment — particularly that of the Secure Shell
Protocol (SSH). We aim to show that through a concrete realization of RV-TEE, which is neither tied to specific CPU mode nor
requires the consequential operating system support, SSH execution can be rendered trustworthy. We provide: (i) An RV-TEE
setup for a popular SSH implementation based on a widely-adopted RV tool, and a USB-connected hardware security module
(ii) An overview of the property extraction process through a methodical analysis of the SSH protocol specifications (iii) Security
vulnerabilities identified as a result of RV-TEE adoption (iv) An overhead analysis delineating what SSH applications can benefit
from our proposed setup in a practical manner.

KEYWORDS runtime verification, trusted execution environment, cryptographic protocols

1. Introduction

It is standard cryptographic practice to establish provable se-
curity guarantees in a suitable theoretical model, abstracting
from implementation details. However, the security of any cryp-
tographic system needs to be holistic: over and above being
theoretically secure and implemented in a secure way, the op-
eration of a protocol also needs to be secured. While there
exists a lot of research on the theory and general implementa-
tion aspect of cryptographic systems, its long-term operation
security, albeit heavily studied, is not so well established. Evi-
dence for undesirable consequences stemming from this state of
affairs is unfortunately way too frequent, with several high pro-
file incidents making the information security news1 in recent
years.

JOT reference format:
Axel Curmi, Christian Colombo, and Mark Vella. RV-TEE-Based Trustworthy
Secure Shell Deployment: An Empirical Evaluation. Journal of Object
Technology. Vol. 21, No. 2, 2022. Licensed under Attribution 4.0
International (CC BY 4.0) http://dx.doi.org/10.5381/jot.2022.21.2.a4
1 https://securityintelligence.com/heartbleed-openssl-vulnerability-what-to-do

-protect,
https://github.com/openssl/openssl/issues/353,
https://blog.trailofbits.com/2018/08/01/bluetooth-invalid-curve-points

Our approach takes the form of a Trusted Execution Environ-
ment (TEE) that can isolate security-critical code from poten-
tially malware-compromised, untrusted, code. Complete isola-
tion can be made possible through a complete context switch,
where not even privileged code can interfere with the execution
of security-critical code (Sabt et al. 2015). Typically, TEEs
are implemented as CPU modes offering encrypted memory,
with Intel SGX (McKeen et al. 2016), AMD SEV/SME (Kaplan
et al. 2016) and ARM TrustZone (Pinto & Santos 2019) being
notable examples. These so-called ‘code enclaves’ pose code de-
velopment challenges due to a departure from the better-known
application runtimes provided by operating systems at the user
and kernel levels. Furthermore, attacks on these types of CPU
TEEs are not unheard of either (Brasser et al. 2017).

As an alternative to switching to specialised TEE hardware,
this work provides the same service through the use of Hardware
Security Modules (HSM) peripherals that can be attached to
stock hardware over standard interfaces. HSMs are responsible
to isolate the security-critical code, with code development
availing itself from more familiar runtimes as compared to
programming code for CPU TEEs. However, an HSM on its
own does not fulfill all TEE requirements. In particular, the
code that interacts with the HSM and is left to execute on the

An AITO publication

http://dx.doi.org/10.5381/jot.2022.21.2.a4
https://securityintelligence.com/heartbleed-openssl-vulnerability-what-to-do-protect
https://securityintelligence.com/heartbleed-openssl-vulnerability-what-to-do-protect
https://github.com/openssl/openssl/issues/353
https://blog.trailofbits.com/2018/08/01/bluetooth-invalid-curve-points


stock hardware (the untrusted domain) also requires securing.
This is where the central role of runtime verification (RV) is
brought into the picture, resulting in an RV-centric TEE (RV-
TEE) solution.

RV’s role is two-fold: It firstly fulfills the role of a secu-
rity monitor that scrutinises dataflows crossing trust boundaries
between the stock hardware and the HSM. Moreover, it also pro-
vides the all-important runtime service of verifying the correct
implementation of the protocol. The overall benefits of opting
for an RV-TEE approach, as opposed to a TEE CPU mode, are
(i) avoiding having to commit to a specific hardware TEE, but
rather making use of an HSM that is better trusted and which
can be substituted in case of emerging threats, (ii) and which
readily-works with available stock hardware, while at the same
time also avail from (iii) continuous verification of the protocol’s
implementation. In this paper, we instantiate and perform an
in-depth study of the RV-TEE approach to a Secure Shell (SSH)
deployment. Overall we make the following contributions: (i)
An RV-TEE setup for Paramiko2, a popular SSH implemen-
tation, based on the LARVA3 RV tool and a USB-connected
hardware security module: SEcube4. (ii) An overview of the
property extraction process through a methodical analysis of the
SSH protocol specifications. (iii) Two security vulnerabilities
identified as a result of RV-TEE adoption for Paramiko. (iv) An
empirical evaluation of the practicality of the approach from the
perspective of incurred performance and memory overheads.

2. BACKGROUND AND CONTEXT
Cryptographic protocols are designed to withstand a broad range
of adversarial strategies. Standard practice is to rely on formal
security models and succinct definitions given — making ex-
plicit the exact scenario in which a security proof (or reduction)
is meaningful. Formal models (Abadi & Rogaway 2000) and
supporting automation tools (Meier et al. 2013) consider the
underpinning cryptographic primitives, e.g. a/symmetric encryp-
tion, cryptographic hashes, and sources of randomness, as black-
boxes and therefore focus solely on the protocol exchanges. This
is acceptable practice since the primitives would have already
undergone significant security analysis before adoption. What
is of paramount importance, rather, is to verify that the protocol
steps can withstand active adversaries, with bounded computa-
tional resources, that can record, replay, reorder, reroute, forge,
modify and delete the exchanges, among other operations.

Yet, proponents of formal methods for protocol analysis still
make very sure to warn that formal proofs do not imply a guar-
antee of security. The primary reason for this is the gap between
the representation of encryption in a formal model and its con-
crete implementation. One further problem is the assumption
that security parameters, e.g. secret keys, of cryptographic prim-
itives are not compromised. Yet, practitioners are well-aware
of the data leak and breach attack models, where temporary
session keys and long-term ones respectively, get disclosed (Au-
masson 2017). While these attack models are never considered

2 https://www.paramiko.org
3 http://www.cs.um.edu.mt/svrg/Tools/LARVA/
4 https://www.secube.eu

in any formal analysis model, in practice these are made possi-
ble by sophisticated malware attacks. Therefore, while having
formal models to prove security protocols safe is a crucial first
step, there are several things which may still go wrong in the
implementation at runtime — ranging from low-level hardware
issues, to side-channel attack vulnerabilities, to malware attacks,
to high-level logical implementation bugs.

The malware being considered in this research gets injected
into the target process, in this case the process executing the pro-
tocol, to exfiltrate sensitive information such as cryptographic
key data — defeating any cryptography without having to break
its mechanisms (Vella et al. 2021). Banking trojans such as
Zeus, Dridex, Ursnif, and Trickbot, are information stealing
malware, especially targeting the financial industry, that dynam-
ically operate from attacker-given commands via a command
and control (C2) channel (Black et al. 2018).

Runtime verification (RV) (Bartocci et al. 2018) involves
the observation of a software system — usually through some
form of instrumentation — to assert whether the specification is
being adhered to. There are several levels at which this can be
done: from the hardware level to the highest-level logic, from
module-level specifications to system-wide properties, and from
point assertions to temporal and hyper properties.

Besides typical RV use of ensuring adherence to specification
properties, we leverage RV for the provision of a trusted exe-
cution environment (TEE) to protect the execution of security-
critical tasks (Sabt et al. 2015) such as cryptographic protocol
steps. The crucial role of TEE comes into play when despite an
eventual infection, malware is not able to interfere with security-
critical code executing inside the trusted domain. Complete
isolation is key, encompassing CPU, physical memory, sec-
ondary storage and even expansion buses. Code provisioning
to the trusted domain as well as data flows between the two
domains must be fully controlled in order to fend off malware
propagation through trojan updates or software vulnerability
exploits. These two requirements can be satisfied through segre-
gation of security-critical components and a secure monitor that
inspects all data flows crossing the trust domain boundary.

The main limitation with using widely-used TEEs imple-
mented as secure CPU modes is the reliance on black-box hard-
ware and trusting associated operating system support that fa-
cilitates enclave code loading and communication between the
different modes. In contrast, we propose to achieve a similar
level of assurance by combining RV with any HSM of choice,
whether a high-speed bus adapter, or a micro-controller hosted
on commodity USB stick, or perhaps even a smart card. The
net benefit is to have such hardware modules extend, rather than
replace, existing hardware.

Previous research has already partially validated the idea of
RV-TEE by applying it to an ECDHE key agreement protocol
(RFC8446) (Colombo. & Vella. 2020; Vella et al. 2021), and a
post-quantum group authenticated key exchange (PQ GAKE)
(Abela et al. 2021). RV-TEE provides secure cryptographic
protocol execution by employing an HSM and two runtime
verification monitors. The HSM is connected, via USB, to the
machine performing secure protocol execution by providing an
isolated and tamper-resistant environment for cryptographic op-

2 Curmi et al.

https://www.paramiko.org
http://www.cs.um.edu.mt/svrg/Tools/LARVA/
https://www.secube.eu


eration execution and long-term key storage. On the other hand,
the first RV monitor is used to ensure that the protocol execution
conforms to the specification, while the second monitor ensures
that data flows across the trust boundary are legitimate.

In this work, we turn our attention to Secure Shell (SSH)
— an internet standard network protocol for secure network
services, such as remote login, over insecure networks. The
SSH protocol consists of three components:

Transport Layer Protocol (RFC4253), which is responsible
for message transportation over TCP/IP, protocol version
exchange, cipher suite negotiation, key exchange to es-
tablish session keys and host-based authentication. While
building upon secure cryptographic primitives, security
issues may still arise from insecure protocol implementa-
tion. For example, a man-in-the-middle attack becomes
possible if SSH server certificates are not verified prop-
erly by clients. Similar issues may arise at the message
authentication level. In the eventuality of incomplete veri-
fication of message authentication codes (MAC), attackers
would still be able to perform malicious message tamper-
ing while going undetected, despite the secure underlying
cryptographic scheme.

User Authentication Protocol (RFC4252), which manages
user authentication using public key, password, and host-
based authentication methods. In the event of a client
breach, an attacker can connect with any SSH server using
these authentication methods with ease (assuming these
methods are not being used in combination with another
authentication method).

Connection Protocol (RFC4254), which relies on the security
services provided by the prior components. It handles
channels to provide features such as interactive terminal
sessions, x11 forwarding, execution of commands onto a
remote host, and port forwarding.

In the rest of this paper, we instantiate our approach for SSH,
starting with the architectural design in the following section.

3. RV-TEE — SSH INSTANTIATION
Conceptually, RV-TEE is application agnostic and does not
prescribe choices for property elicitation, application instrumen-
tation, RV architecture, and modification for HSM support in
any way. Implementers must, therefore, address these gaps on
a specific application basis. In this research, the chosen SSH
implementation is the Paramiko Python package, which has
898 dependant packages and over 11.4K dependant reposito-
ries5 as of May 6th 2021. Some of the most popular packages
that use Paramiko include Docker SDK for Python6, Ansible7,
and Apache Airflow8. Thus, by adapting the RV-TEE setup
to Paramiko, an observation of the setup’s behaviour can be
made on a real-world and active code base in terms of overhead.
5 https://libraries.io/pypi/paramiko
6 https://github.com/docker/docker-py
7 https://www.ansible.com
8 https://airflow.apache.org

As a backend for cryptographic operations, Paramiko uses the
cryptography9 package, which is based on the OpenSSL imple-
mentation.

Figure 1 RV-TEE instantiation for SSH

A high-level view of the approach can be seen in Figure 1,
which shows how the RV and HSM components of the RV-TEE
are integrated together to secure the execution of the SSH pro-
tocol. We follow the proven approach explored in prior work
through the employment of the LARVA RV tool and the SEcube
HSM. The main differences in this case are presented by the
source-level instrumentation applied to a Python codebase, as
opposed to binary-level instrumentation, along with the develop-
ment and use of Python bindings to communicate with SEcube.
The complete setup assumes an additional information leak
monitor, along with an attestation component. The role of the
second monitor is to uncover attempts by malware to leak the
recovered plaintext. On the other hand, attestation asserts that
no privilege escalation attempts, as disclosed by authenticated
system logs, compromise monitor integrity.

3.1. Runtime verification
The runtime verification component in RV-TEE is used to assert
conformance between the design and implementation of the
protocol. In this work, we have taken the less risky approach
of offline monitoring but the online option also fits within the
RV-TEE architecture.

3.1.1. Properties The protocol’s RFC documents (Ylonen
& Lonvick 2006a,b,c,d) were used to systematically derive 18
properties, shown in Table 1 by providing the RFC documents’
contents along with RFC standard keywords (e.g., “MUST”,
“SHOULD”, “REQUIRED”) to a keyword lookup tool10. Prop-
erties 1 and 8 protect against man-in-the-middle attacks, Proper-
ties 2, 7, 12, and 13 assert the correct flow of protocol messages,
while Property 3 protects against downgrade attacks. Vulnera-
bilities introduced by an insecure configuration are protected by
Properties 4 and 5. If the protocol is implemented incorrectly, it
might leak sensitive information; Properties 6, 17, and 18 are
concerned with leakage of sensitive information due to faulty

9 https://cryptography.io
10 https://github.com/axelcurmi/textract

RV-TEE-Based Trustworthy Secure Shell Deployment: An Empirical Evaluation 3

https://libraries.io/pypi/paramiko
https://github.com/docker/docker-py
https://www.ansible.com
https://airflow.apache.org
https://cryptography.io
https://github.com/axelcurmi/textract


implementation. Proper derivation and usage of cryptographic
keys are protected by Properties 9, 10, and 11, while Properties
14 and 15 assert correct protocol message structure. Last but
not least, Property 16 ensures the authenticity and integrity of
the communicated protocol messages.

At this research stage, the properties derived focus on the
client-side of the protocol. Client-side SSH is being prioritised
over its server counterpart since devices tend to have weaker
overall security than typical servers. In fact, the SEcube device
used for this research is aimed towards client devices, which
is less expensive and connects to workstations over USB. All
of the derived properties are important and required to obtain
a trustworthy deployment of the protocol implementation. As
an example, consider Property 8 “When a KEXDH_REPLY
message is received from the server, the client must verify the
public host key with the signature of the hash obtained”. If this
property is violated, the client is vulnerable to an active man-in-
the-middle attack as a client-to-attacker and attacker-to-server
connection can be established, allowing the attacker to decrypt
all communication between the client and the server.

3.1.2. Instrumentation Instrumentation of protocol func-
tions was done in the form of monkey-patching using the as-
pectlib Python library. Monkey-patching is a technique to alter
the behaviour of code during runtime without modifying its
source code. The way this is used by aspectlib is by updating the
reference of the target function with the reference of the aspect
function. By doing so, the aspect function is executed instead of
the original function. Listing 1 shows the code required to add
RV instrumentation into the functions parse_kexdh_reply() and
verify_ssh_sig() to monitor Property 8. The add_event() func-
tion, is used to save the occurring event into the JSON trace file
(lines 4, 8, and 12), while the yield keyword is used to execute
the original Paramiko function (lines 6 and 13). Thus, the aspect
functions are only used to save events occurring before, after, or
even in case of an exception being thrown during the execution
of the original function. The aspectlib.weave() function is used
to monkey-patch the aspect function to the target function, in
this case the aforementioned Paramiko functions (lines 16 and
17).

1 # Aspect functions
2 @aspectlib.Aspect
3 def _parse_kexdh_reply_aspect (∗args):
4 add_event (" BEFORE", "_parse_kexdh_reply ")
5 try:
6 yield
7 finally:
8 add_event (" AFTER", "_parse_kexdh_reply ")
9

10 @aspectlib.Aspect
11 def verify_ssh_sig_aspect (∗args):
12 add_event (" BEFORE", "verify_ssh_sig_aspect ")
13 yield
14

15 # Monkey patching aspect functions
16 aspectlib.weave(paramiko.kex_group14.KexGroup14.

_parse_kexdh_reply , _parse_kexdh_reply_aspect
)

17 aspectlib.weave(paramiko.ECDSAKey.verify_ssh_sig ,
verify_ssh_sig_aspect)

Listing 1 Instrumentation code for Property 8

Table 1 SSH Client properties derived
1. The client should have prior knowledge of the SSH server’s host
key before connecting, otherwise the connection is not secure.
2. When the connection has been established, both sides must send
an identification string.
3. When the client is connecting to a server with an older SSH
version, the client should close the connection with the server.
4. The “none” cipher is provided for debugging and should not be
used except for that purpose.
5. Users and administrators should be explicitly warned anytime
the “none” Message Authentication Code (MAC) option is enabled.
6. It is recommended that debug messages be initially disabled
at the time of deployment and require an active decision by an
administrator to allow them to be enabled.
7. Once a party has sent a SSH_MSG_KEXINIT message for
key exchange or re-exchange, until a SSH_MSG_NEWKEYS mes-
sage is sent, it must not send any messages other than transport
layer generic messages (excluding any service requests or ac-
cept messages), algorithm negotiation messages (excluding further
SSH_MSG_KEXINIT), or specific key exchange method messages.
8. When a KEXDH_REPLY message is received from the server,
the client must verify the public host key with the signature of the
hash obtained.
9. All messages sent after the SSH_MSG_NEWKEYS message must
use the new keys and algorithms.
10. When the SSH_MSG_NEWKEYS message is received, the new
keys and algorithms must be used for receiving.
11. Encryption keys must be computed as a hash of a known value
and the shared secret established during key exchange, as defined
in RFC4253.
12. The client must not send a subsequent authentication request
if it has not received a response from the server for the previous
authentication request.
13. After a key exchange with implicit server authentication, the
client must wait for a response to its service request message before
sending any further data.
14. The random padding field of an SSH packet must be at least 4
bytes and no more than 255 bytes in length.
15. The length of the concatenation of packet length, padding
length, payload, and random padding must be a multiple of the
cipher block size or 8, whichever is larger.
16. The MAC should be verified for each SSH packet received,
where available.
17. Once the key exchange completes, the private parameters for
the client and server should be scrubbed from memory.
18. It is recommended that the keys be changed after each gigabyte
of transmitted data or after each hour of connection time, whichever
comes sooner.

3.1.3. Modelling the properties using LARVA Once the
target functions are instrumented and events are saved into a
JSON event trace, the next step is modelling the properties
to create the runtime verification monitors. For this research,
the LARVA (Colombo et al. 2009b) script is used to specify
properties using an automata-based approach (DATEs (Colombo
et al. 2009a)). Since runtime verification is performed offline,

4 Curmi et al.



all LARVA events hook with the replay() function of the Event
class and use the filter option to select events depending on the
requirement, as shown in Listing 2, lines 2, 7, and 12 (where
events are filtered based on the name of the event and when
it occurred). Additionally, the where feature of LARVA is
also used to bind the defined variables within the automaton
transitions. Next, Listing 3 shows the LARVA code defining
the automaton structure for Property 8. Once this is compiled,
AspectJ code replays events from the function trace file which
runtime verification monitors, in turn, consume to check for
violations.

1 before_parse_kexdh_reply(Event e) = { Event e1.
replay () }

2 filter { e1.getWhen ().equals (" BEFORE ") &&
3 e1.getWhat ().equals (" _parse_kexdh_reply ")

}
4 where { e = e1; }
5

6 after_parse_kexdh_reply(Event e) = { Event e1.
replay () }

7 filter { e1.getWhen ().equals ("AFTER ") &&
8 e1.getWhat ().equals (" _parse_kexdh_reply ")

}
9 where { e = e1; }

10

11 before_verify_ssh_sig_aspect(Event e) = { Event
e1.replay () }

12 filter { e1.getWhen ().equals (" BEFORE ") &&
13 e1.getWhat ().equals ("

verify_ssh_sig_aspect ") }
14 where { e = e1; }

Listing 2 LARVA events defined for the hooked functions of
Property 8

1 PROPERTY verifyHostKeyProperty {
2 STATES {
3 BAD { hostKeyNotVerified }
4 NORMAL { shouldVerifyHostKey }
5 STARTING { start }
6 }
7 TRANSITIONS {
8 start −> shouldVerifyHostKey [

before_parse_kexdh_reply ]
9 shouldVerifyHostKey −> start [

before_verify_ssh_sig_aspect ]
10 shouldVerifyHostKey −> hostKeyNotVerified

[ after_parse_kexdh_reply ]
11 }
12 }

Listing 3 LARVA code for Property 8

3.1.4. Replaying events and offline runtime verification
Once the Python instrumentation has been applied to a Python
runner script and RV monitors have been set up with LARVA,
offline runtime verification of the protocol implementation can
occur. Firstly, the Python runner script is executed, initiating a
new session for the protocol implementation and performing a
number of typical SSH tasks. While the protocol implementa-
tion functions are being executed, the function execution trace
is saved on the fly in a JSON file. A sample of the function
execution trace file is presented in Listing 4, which contains
multiple events, each consisting of the following properties:

1. ID: Used to uniquely identify each event and acts as the
reference point in the event of a property violation

2. Timestamp: Used for timing specific properties
3. What: The name of the executed function
4. When: When the event occurred (i.e., before/after the

execution of a function or handling of an Exception)
5. Watch: Values captured during the runtime of the protocol

which are necessary to monitor the property (e.g., length
of the packet being sent)

1 [
2 {
3 "id": 0,
4 "timestamp ": 1628349076 ,
5 "what": "_parse_kexdh_reply",
6 "when": "BEFORE"
7 },
8 {
9 "id": 1,

10 "timestamp ": 1628349076 ,
11 "what": "verify_ssh_sig_aspect",
12 "when": "BEFORE"
13 },
14 {
15 "id": 2,
16 "timestamp ": 1628349076 ,
17 "what": "_parse_kexdh_reply",
18 "when": "AFTER"
19 },
20 {
21 "id": 3,
22 "timestamp ": 1628349076 ,
23 "what": "_compute_key",
24 "when": "AFTER",
25 "watch": {
26 "key_match ": true
27 }
28 }
29 ]

Listing 4 Sample function trace JSON file

Once the Python test driver script has completed, the instru-
mented event replayer tool is executed by supplying the path of
the previously generated function trace file. The event replayer
opens the file with the given path, parses the JSON string into
an array of events, and replays each event iteratively. While the
events are being replayed, the LARVA monitors assert whether
the executed event violates any of the monitored properties and
logs how each event affects its respective properties’ automaton
into a text file. A typical LARVA report file keeps track of
any automaton state changes caused by the execution of some
event in textual format. If an automaton reaches a bad state
(i.e., property violation), the report contains the easily visible
message “!!!SYSTEM REACHED BAD STATE!!!”. A snippet
of a LARVA report file is shown in Listing 5, which shows an
example of a valid event updating the verifyHostKeyProperty
property automaton (line 2) and an event violating the cleared-
DHValuesProperty property (line 4).

1 [verifyHostKeyProperty]AUTOMATON ::>
verifyHostKeyProperty () STATE::>start

2 [verifyHostKeyProperty]MOVED ON METHODCALL: void
com.axelcurmi.eventreplayer.Event.replay () TO
STATE::> shouldVerifyHostKey

3 [clearedDHValuesProperty]AUTOMATON::>
clearedDHValuesProperty () STATE::>start

RV-TEE-Based Trustworthy Secure Shell Deployment: An Empirical Evaluation 5



4 [clearedDHValuesProperty]MOVED ON METHODCALL:
void com.axelcurmi.eventreplayer.Event.replay
() TO STATE::> !!! SYSTEM REACHED BAD STATE !!!
bad

Listing 5 Sample LARVA report text file

It should also be noted that an RV monitor for Property
5 cannot be set up as Paramiko does not support the “none”
option for MAC algorithms. Thus, the protocol implementation
does not contain the warning function, as mentioned in the
property description. As a result, since the function does not
exist, instrumentation cannot be applied. However, if such a
feature existed in the protocol implementation, a monitor for this
property can be implemented without difficulty by asserting that
the desired warning function is executed if the “none” option is
found within the preferred MAC algorithms list.

Over and above the steps outlined above, RV-TEE also re-
quires monitoring all data flows across the trust boundary of
the TEE. This additional monitoring provides extra hardening
against elevated malware and is a vital requirement of the RV-
TEE setup as it closes the loop between the untrusted domain
and the trusted domain since the protocol is executed on the
untrusted domain. The low-level monitor works by applying
taint-inferring RV with the USB drivers. Therefore, if any privi-
leged malware attempts to exfiltrate sensitive information from
the HSM, specifically the cryptographic key data, or deploy
some trojan update onto the HSM, it is detected by this monitor.
Rather than reimplementing this module for SSH, we aim to
reuse it from similar ongoing work on the ECDHE instantiation.
Furthermore, since this component executes inside the insecure
domain, rather than inside the HSM, its employment requires
the support of an associated remote attestation by the HSM.
Additional attestation is also needed to authenticate system logs
uncovering attempts at privilege escalation. The proponents of
RV-TEE (Vella et al. 2021) are yet to complete this aspect.

3.2. Hardware security module
The protocol implementation is enhanced by utilising a hard-
ware security module (HSM) to handle the execution of crypto-
graphic primitives and provide storage for the ephemeral cryp-
tographic keys used throughout the protocol execution. The
chosen HSM is the SEcube11 USB Token, installed with an SE-
cube chip consisting of three key security components: an ARM
32-bit Cortex-M4 CPU, a field-programmable gate array, and
an EAL5+ certified SmartCard. Several features of an SEcube
chip include cipher execution speed-up through hardware FGPA
implementation, true random number generation, and 2MB of
embedded flash memory for long-term key storage. The HSM
is used to provide isolation and tamper resistance to the pro-
posed TEE, as security-critical code (in this case, cryptographic
functions used throughout the execution of the protocol) will
be provided from libraries located on the HSM rather than off-
the-shelf cryptography libraries. Hence, preventing a possible
computer infection from accessing crucial code sections and
leaking information such as symmetric keys and plaintext infor-
mation, even in the case of kernel-mode rootkits and bootkits
(Matrosov & Rodionov 2011).

11 https://www.secube.eu

To utilise the HSM within the protocol implementation, the
open-source firmware and host libraries are used. As shown
in Figure 2, to enhance the SSH protocol implementation with
HSM calls, a C++ shared library12 exposing SEcube functional-
ity through an API was developed as the SEcube host libraries
are provided as C++ source files. Once the shared library was in
place, a Python wrapper13 was implemented using the ctypes14

built-in Python library such that low-level SEcube calls can be
made from any Python application.

Figure 2 PySEcube implementation pipeline

After the python SEcube wrapper was set up, modifications
to the protocol implementation15 were made to replace existing
cryptography calls with SEcube calls. Specifically, these calls
relate to ephemeral key loading, along with message encryption,
decryption authentication, as follows:

– Encryption (resp. decryption) when sending (resp. receiv-
ing) protocol-specific messages

– Message authentication code generation when sending
(resp. receiving) encrypted protocol-specific messages
for verification

– Key exchange occurring during initial setup of SSH con-
nection and when the re-keying procedure is triggered

– Ephemeral cryptographic key derivation when encrypted
protocol-specific messages are ready to be sent (resp. re-
ceived)

4. Experimentation Setup
Using the RV-TEE instantiation in the context of Paramiko’s
SSH implementation, empirical evaluation is carried out to flag
property violations and measure the performance and memory
overheads.

For experimentation, a setup is configured, as shown in Fig-
ure 3 with the following components:

1. An SEcube device to be used as a secure key storage for
the ephemeral cryptographic keys and to execute the cryp-
tographic primitives implemented in the device.

2. An executable Python test driver which makes use of the
protocol implementation to connect with an SSH server
and perform a task depending on the test being carried
out. The Python test driver also makes use of the aspectlib
library by adding function tracing to relevant functions of
the protocol implementation.

3. A Java event replayer tool hooked with LARVA monitors
that takes a function trace in the form of a JSON file,

12 https://github.com/axelcurmi/SEcubeWrapper
13 https://github.com/axelcurmi/PySEcube
14 https://docs.python.org/3/library/ctypes.html
15 https://github.com/axelcurmi/Paramiko

6 Curmi et al.

https://www.secube.eu
https://github.com/axelcurmi/SEcubeWrapper
https://github.com/axelcurmi/PySEcube
https://docs.python.org/3/library/ctypes.html
https://github.com/axelcurmi/Paramiko


Figure 3 Experimentation setup

replays the events iteratively and performs offline runtime
verification.

4. A machine to execute the Python test driver and event
replayer tool.

5. A Linux machine installed with an SSH server and Docker.
6. A Linux machine installed with a web server and config-

ured to only accept incoming connections from the SSH
server.

The SEcube device used for experimentation is the SEcube
Development Kit, which provides a development environment
for the SEcube chip by supplying several I/O interfaces. The
development kit connects to an ST-Link/V2 via a 20-pin JTAG
interface to allow firmware installation and debugging, and both
devices then connect to the host machine via USB 2.0 to provide
power and usability to the HSM features.

4.1. Runtime verification
When investigating the protocol implementation to assert
whether or not it is inline with the design, the offline runtime
verification component of the RV-TEE is used as shown in Fig-
ure 4. This experiment is application-independent. Thus the
test driver script is used to execute the instrumented Paramiko
implementation comprehensively irrespective of the use case
being executed, generating a JSON trace file understood by
the event replay tool. On trace replay, the LARVA-synthesised
monitors flag all property violations.

Figure 4 Offline RV setup

4.2. Performance and memory overheads

The introduced performance overhead of the RV-TEE setup is
measured by using the time module available in the Python built-
ins. Time readings are taken before and after the experiment has
been performed, such that the total time taken by the experiment
can be obtained by subtracting the former time reading from the
latter time reading. On the other hand, the memory overhead of
the RV-TEE setup is measured by executing the protocol using
the memory-profiler16 module. The experimentation setup used
in this research allows a modular configuration of components,
which means that the experiments can be performed by (1) not
using the RV-TEE setup; (2) only instrumenting the protocol
implementation for runtime verification; (3) only adapting the
protocol implementation for SEcube utilisation; or (4) adopting
the full RV-TEE setup (i.e., RV instrumentation and SEcube
utilisation within the protocol implementation). The experi-
ments performed are executed using each combination of the
configuration and compared to determine the impact of the per-
formance and memory overhead at every stage of the RV-TEE
instantiation.

Several precautions were taken to ensure the results obtained
were correct. One precaution taken was to perform every per-
formance and memory overhead-related experiment multiple
times and averaging out the results to avoid one-off issues. Also,
to ensure a fair comparison of the results, the host machine
is ensured not to have any CPU and memory-intensive tasks
running in the background during testing, as the host machine
would otherwise not allocate the same amount of hardware re-
sources to each experiment. A final precaution was to make sure
that the start and stop events of the stopwatch wrap only the
relevant actions of the experimentation; thus, being as accurate
as possible. The memory profiler tool takes the total memory
allocated reading every 0.1 seconds; thus, similar precautions
to the time-related readings were unnecessary.

Paramiko is popularly used for several different applications
such as remote command execution, secure file transfer, and
port forwarding and is implemented by several popular pack-
ages such as the Docker Python SDK, Ansible, and Apache
Airflow. The empirical evaluation is performed using four dif-
ferent experiments, each targeting a different application of the
protocol implementation. The experiments performed involve
(A) command execution; (B) secure file transfer; (C) docker
container execution and logging; and (D) SSH tunnelling to
firewall-protected services. The command execution and secure
file transfer experiments are performed to analyse the RV-TEE
setup for the typical usage of the SSH protocol, while the docker
and SSH tunnelling experiments target more niche usages of
the SSH protocol. The purpose of having four significantly
different experiments is to sample the performance and memory
overheads across varying protocol applications. Furthermore,
we sample different message response sizes to get an idea of
how RV-TEE behaves under different loads, starting with small
numbers and progressively increasing the size until the system
approaches breaking point.

Experiments B, C, and D make use of other third-party open-

16 https://pypi.org/project/memory-profiler/

RV-TEE-Based Trustworthy Secure Shell Deployment: An Empirical Evaluation 7



source packages, apart from Paramiko, to investigate the RV-
TEE instantiation when used with well-adopted and real-world
usages of the protocol implementation, while Experiment A
is performed solely using the protocol implementation as the
command execution operation is already well implemented. The
command execution experimentation is performed by executing
a number of commands using the exec_command() function
provided by Paramiko. To execute commands with specific
response sizes, the cat command is used to print the contents
of files, with specific sizes, to standard output. The secure file
transfer experimentation is performed by transferring text files,
with specific sizes, from the host machine to the SSH server
using put() function provided by the scp17 Python package. The
Docker experiments are performed using the Docker Python
SDK18 by creating and starting a Docker container using a
custom-built image, and ultimately fetching the Docker con-
tainer logs multiple times. An example Dockerfile used when
building the custom images is shown in Listing 6, which creates
a 1KB text file in the Docker container once created. When the
Docker container starts, the text file is printed to standard output.
Using the logs() function from the Docker Python SDK, the log
data, which is of a specific size, is sent from the Docker server to
the host machine using Paramiko. The SSH tunnel experiments
are performed as a two-step process. Firstly, an SSH tunnel
must be established between the host machine and the HTTP
server by connecting with the SSH server using the ssh tunnel19

Python package to bypass firewall protection and access the
HTTP server resources. Once the SSH tunnel is established,
the experimentation is performed by requesting HTML pages,
with specific sizes, hosted on the HTTP server. To perform the
SSH tunnel experimentation using practical web page sizes, the
size of the top 100 websites available from the Majestic Million
(The Majestic Million n.d.) list are obtained and organised into
percentiles. The HTML pages used for experimentation target
specific percentiles, ranging between 32KB and 18.2MB, as
shown in Table 2, from the top 100 websites analysed.

1 FROM alpine
2

3 RUN apk add perl
4 RUN perl −e ’print "A" x (1024) ’ > 1KB.txt
5

6 CMD ["cat", "1KB.txt"]

Listing 6 Dockerfile used for 1KB Docker experimentation

Table 2 Web page size per percentile (in MB)
5% 25% 50% Avg. 75% 95% 100%

Size 0.032 0.352 0.928 1.73 1.88 5.41 18.2

17 https://github.com/jbardin/scp.py
18 https://github.com/docker/docker-py
19 https://github.com/pahaz/sshtunnel

5. Results

5.1. Property violations detected
An analysis of the protocol implementation in terms of compli-
ance with the protocol specification has been performed using
offline runtime verification. Seventeen properties were moni-
tored and tested, because Property 5 cannot be monitored on
the SSH implementation under consideration, as explained in
Section 3.1. Out of the seventeen monitored properties, two
properties were found to have been violated by the protocol
implementation, and GitHub issues have been created for the
Paramiko repository regarding these violations. Since then,
Property 18 has been marked as a duplicate, while the other is
still open at the time of writing.

The first violated property is Property 17, which states that
once the key exchange completes, the private parameters should
be scrubbed from memory. To determine whether or not this
property is being violated, the memory location of the private
exponent is analysed before and after parsing the new keys
message; the latter only occurring when the key exchange is
complete. Thus, if the data at the memory location is unchanged,
it means that the private exponent variable which should be
scrubbed from memory is not scrubbed; hence, violating this
property. A violation for this property has been detected as
the data of the private exponent is kept intact in memory well
after the key establishment was complete. This violation can
be confirmed by manual code inspection, as shown in Listing 7:
there is no operation that scrubs the private values used during
key exchange, in this case self.kex_engine.x, prior to removing
the reference of the key exchange engine on line 7.

1 # in transport.py
2 def _parse_newkeys(self , m):
3 self._log(DEBUG , "Switch to new keys ...")
4 self._activate_inbound ()
5

6 self.local_kex_init = self.remote_kex_init =
None

7 self.K = None
8 self.kex_engine = None
9 # ... reduced code ...

Listing 7 Function responsible for violating Property 17

The second property violation occurs for Property 18, which
states that it is recommended that the cryptographic keys are
changed after each gigabyte of transmitted data or after each
hour of connection time, whichever comes sooner. To determine
if this property is violated, two experiments were performed,
each targeting one condition of the property. The first experi-
ment sends one gigabyte of data and asserts that re-keying is
performed, while the second experiment keeps an SSH con-
nection alive for just over an hour and asserts whether or not
re-keying was performed. It was found that re-keying is per-
formed correctly after a gigabyte of data has been transmitted.
However, re-keying is not triggered when an hour has elapsed
since the derivation of the ephemeral cryptographic keys; hence
detecting a violation for this property. This violation can also
been confirmed through manual code inspection, as the vari-
ables used for detecting when to re-key, in Listing 8 lines 6 to
11, are missing the required time elapsed variables. Also, there

8 Curmi et al.

https://github.com/jbardin/scp.py
https://github.com/docker/docker-py
https://github.com/pahaz/sshtunnel


is no duration-dependant logic which triggers the re-keying
procedure in the Packetizer class.

1 # in packet.py
2 class Packetizer(object):
3 def __init__(self , socket):
4 # ... reduced code ...
5 # used for noticing when to re−key:
6 self.__sent_bytes = 0
7 self.__sent_packets = 0
8 self.__received_bytes = 0
9 self.__received_packets = 0

10 self.__received_bytes_overflow = 0
11 self.__received_packets_overflow = 0
12 # ... reduced code ...

Listing 8 Missing time elapsed variables for Property 18

5.2. Performance overhead
Table 3 presents the performance overhead obtained using all
configurations of the RV-TEE setup in the form of percentages
and time taken, in milliseconds, averaged over runs with 1000
repetitions, to perform a single operation for Experiments A,
B, C, and D. From the percentage overhead introduced, it is
apparent that the SEcube device introduced much higher perfor-
mance overhead than the RV instrumentation. This is expected
as the HSM is executing computationally heavy cryptographic
operations such as encryption (resp. decryption) and generating
a MAC, while the RV component at runtime only contributes
performance overhead in the form of code instrumentation due
to the offline setup.

We note that out of the four tested use cases, three break
under a specific load. The first operational failure was found
when executing commands with a response size of 1MB 1000
times. After further investigation, the reason for this failure was
determined to be a deadlock, as a threading event is cleared
when the protocol implementation initiates. However, due to
the large number of fragmented messages being received and
due to the slowdown caused by the SEcube, the two running
threads get stuck in an infinite loop, one thread attempting to
open a new channel while the other thread attempting to close
an existing channel, as both functions require the threading
event to be set to continue. Other operational failures occurred
while performing the Docker experimentation, as the RV-TEE
setup could not fetch 10 logs of 1 Gigabyte each, and while
performing the SSH tunnel experimentation, as the RV-TEE
setup could not load 18.2MB websites via the SSH tunnel 1000
times.

5.2.1. Command execution (A) Figure 5 shows the time
taken, in milliseconds, averaged over runs with 1000 repetitions,
to execute a command on the remote SSH server, with varying
response sizes, using all configurations of the RV-TEE setup.
The RV instrumentation has constantly produced negligible per-
formance overhead throughout this experimentation, ranging
between 2.8ms and 7.43ms slowdown. On the other hand, the
HSM introduced higher performance overhead from the start;
however, until the 10KB mark, the slowdown of the HSM was
consistently between 50.73ms and 71.64ms. Once the command
size further increased, the introduced overhead increased at a

Table 3 Performance overhead percentage and time taken (in
milliseconds), averaged over runs with 1000 repetitions, of all
use cases using all configurations of the RV-TEE setup

Command execution (A)

128B 1KB 500KB

Baseline 6.944 7.321 23.343

RV inst. 44.11% (10.007) 47.59% (10.805) 29.02% (30.118)

SEcube 756.91% (59.502) 698.28% (58.438) 4900.54% (1167.298)

RV-TEE 867.29% (60.223) 814.55% (59.630) 5007.19% (1168.849)

Secure file transfer (B)

128B 1KB 1MB

Baseline 12.220 33.048 13.346

RV inst. 2.31% (12.502) 3.70% (34.270) 57.39% (21.006)

SEcube 776.28% (107.083) 181.19% (92.927) 18076.19% (2425.760)

RV-TEE 783.81% (108.003) 187.98% (95.171) 18080.29% (2426.306)

Docker (C)

128B 1KB 1MB

Baseline 4.974 5.057 33.942

RV inst. 11.26% (5.534) 4.81% (5.300) 10.47% (37.494)

SEcube 573.42% (33.496) 612.54% (36.033) 7225.81% (2486.548)

RV-TEE 583.86% (34.016) 617.00% (36.259) 7219.77% (2484.500)

SSH tunnel (D)

32KB 1.73MB 18.2MB

Baseline 708.435 1126.911 3644.165

RV inst. 91.91% (1359.552) 57.17% (1771.140) 19.73% (4363.190)

SEcube 116.02% (1530.344) 74.42% (1965.572)

RV-TEE 159.58% (1838.928) 105.12% (2311.506)

higher rate, ultimately reaching a slowdown of 1143.95ms per
command executed with a response size of 500KB. By compar-
ing the introduced performance overhead of the instrumentation
and the HSM with the overhead of the complete RV-TEE setup,
it can be seen that the SEcube device is the main contributor to
the performance overhead in the case of command execution.

5.2.2. Secure file transfer (B) Figure 6 shows the time
taken, in milliseconds, averaged over runs with 1000 repeti-
tions, to perform a file transfer, with varying file sizes, from
the host machine to the remote SSH server using all configura-
tions of the RV-TEE setup. During this experimentation, the RV
instrumentation introduced negligible performance overhead,
ranging between 0.28ms and 7.66ms. Similar to Experiment A,
the HSM introduced low performance overhead until the 10KB
mark, ranging between 60ms and 116.60ms. However, once this
file size threshold was exceeded, the slowdown increased to a
range between 1190ms and 2412ms per file transfer for 500KB
and 1MB file sizes respectively. Similarly to experiment A, by
comparing the introduced performance overhead of the RV-TEE
components with the overhead of the complete RV-TEE setup,
it is apparent that the SEcube is the main contributor to the
performance overhead in the case of secure file transfer.

5.2.3. Docker (C) Figure 7 shows the time taken, in mil-
liseconds, averaged over runs with 1000 repetitions, to create,
start, and fetch logs from a Docker container, with varying log

RV-TEE-Based Trustworthy Secure Shell Deployment: An Empirical Evaluation 9



10−1 100 101 102 103

101

102

103

Command response size in KB

D
ur

at
io

n
in

m
ill

is
ec

on
ds

No RV-TEE (baseline)
RV instrumentation
SEcube device
RV-TEE

Figure 5 Average time taken (in milliseconds) to execute a
command per response size using all configurations of the
RV-TEE setup (A)

sizes, using all configurations of the RV-TEE setup. Similarly
to Experiments A and B, the RV instrumentation introduced
negligible performance overhead, ranging between 0.21ms and
3.55ms. While the HSM initially introduced minimal overhead
ranging from 28.52ms to 31ms, this increased at higher rates
once the bandwidth threshold has been exceeded — reaching
a slowdown of 1180ms and 2453ms for Docker files executing
commands with a response size of 500KB and 1MB respectively.
Also in this experimentation, it is apparent that the SEcube is
the main contributor to the performance overhead introduced by
the RV-TEE setup.

5.2.4. SSH tunnel (D) The average time is taken to load a
web page with varying web page sizes using all configurations
of the RV-TEE setup is shown in Figure 8. Unlike Experiments
A, B, and C, the RV instrumentation introduced higher over-
head, ranging between 562ms and 719ms. The HSM introduced
slightly higher performance overhead than the RV instrumen-
tation, ranging between 806ms and 839ms. However, the RV-
TEE-adapted Paramiko implementation reached a breaking limit
when attempting to load 18.2MB web pages 1000 times. When
using the full RV-TEE setup, the loading time per web page is
slowed down by 1161ms on average, ranging between 1130ms
and 1184ms. Thus, for this use case, even though the SEcube in-
troduces higher performance overhead, both RV instrumentation
and HSM introduce similar performance overhead.

5.3. Memory overhead
Table 4 shows the average memory overhead percentage and
average memory allocated when using all configurations of the
RV-TEE setup for Experiments A, B, C, and D. From these
results, it can be seen that the memory overhead introduced
by the RV instrumentation and SEcube is negligible, having a
maximum percentage increase of 6.73% and 12.86% respec-
tively. Overall, the memory overhead of both components is

10−1 100 101 102 103

101

102

103

File size in KB

D
ur

at
io

n
in

m
ill

is
ec

on
ds

No RV-TEE (baseline)
RV instrumentation
SEcube device
RV-TEE

Figure 6 Average time taken (in milliseconds) to perform a
file transfer per file size using all configurations of the RV-
TEE setup (B)

independent of the size of data being processed and transferred.
The average memory overhead introduced by the RV instrumen-
tation and SEcube for command execution, secure file transfer,
Docker, and SSH tunnelling are shown in Figures 9, 10, 11, and
12, respectively. In most cases, the RV instrumentation con-
stantly introduced minimal memory overhead, never exceeding
2.2MB. On the other hand, the memory overhead introduced
when using the SEcube is higher, ranging between 0.32MB
and 11.90MB. The higher memory overhead is expected as it
is caused by the objects created and used during the runtime
of the protocol, such as host-library handles and cryptographic
contexts and buffers.

5.4. Offline RV
In this work, we have opted to keep the runtime verification
offline due to overhead concerns. Table 5 shows the time taken
(in milliseconds), averaged over runs with 1000 repetitions, to
perform offline RV using the LARVA-adapted event replay tool
per experiment executed. Initially, the average time taken is
constant; however, once some bandwidth threshold has been ex-
ceeded, the average time taken increases at a higher rate. Across
all four use cases, the time taken ranges between 1.227ms and
17.75ms.

Due to using an offline RV configuration, the performance
overhead introduced by the RV instrumentation in Experiments
A, B, and C was kept below 7.66ms. However, if the monitors
were to be implemented in an online manner, additional over-
head is introduced on top of the RV instrumentation overhead.
The average time taken to perform offline RV was found to
be higher than the slowdown introduced by the RV instrumen-
tation, as it ranges between 1.248ms and 17.75ms across all
experiments performed. Thus, the time taken to perform offline
RV would be added to the slowdown of the RV instrumentation
as the combined performance overhead introduced by the RV
component. If opting for synchronous online RV, the combined

10 Curmi et al.



10−1 100 101 102 103

101

102

103

Docker log size in KB

D
ur

at
io

n
in

m
ill

is
ec

on
ds

No RV-TEE (baseline)
RV instrumentation
SEcube device
RV-TEE

Figure 7 Average time taken (in milliseconds) to create, start,
and fetch logs from a Docker container per log size using all
configurations of the RV-TEE setup (C)

slowdown would be roughly between 1.458ms and 25.41ms
(approximately 7-times higher at the lower bound and approx-
imately 3-times higher at the upper bound). Nonetheless, an
additional average slowdown of 17.75ms can be considered neg-
ligible for most applications. Even more so, there is still room
to further optimise the online setup by feeding them directly to
the RV monitors instead of writing the traces to disk. Keeping
in mind that this might vary depending on the complexity of the
verification algorithm, our experiments suggest that the savings
gained through offline runtime verification do not surpass the
benefits of detecting violations as soon as they occur (although
a cost-benefit analysis for shifting to an online RV setup would
have to be considered on a case-by-case basis). For example,
online runtime verification monitors can be set to abort the SSH
connection if some property is found to be violated. Thus, if
some sensitive information is leaked due to a property viola-
tion, such as ephemeral keys, the connection is ended to prevent
exposing other information as a result.

6. Discussion
By instantiating an RV-TEE in the context of the SSH protocol,
secure execution of the protocol implementation is obtained as
RV monitors assert conformance between the design and the
implementation, raising alarms if violations are detected, and
the execution of security-critical operations are run in isolation
from the rest of the system within the trusted boundary of the
TEE. The empirical results show that improved security comes
at a non-negligible performance cost. However, depending on
the application context, the performance cost might be within
acceptable boundaries.

From experiments A, B, and C, it can be seen that prior
to reaching a certain bandwidth threshold, which is approxi-
mately 10KB, the slowdown is minimal and constant. Once the
threshold is exceeded, the performance overhead increases at

10−1 100 101
102.8

103

103.2

103.4

103.6

Web page size in MB

D
ur

at
io

n
in

m
ill

is
ec

on
ds

No RV-TEE (baseline)
RV instrumentation
SEcube device
RV-TEE

Figure 8 Average time taken (in milliseconds) to load web
pages with varying sizes via SSH tunnel using all configura-
tions of the RV-TEE setup (D)

a higher rate. For all three experiments, this occurs around the
500KB mark, as the time increased per operation performed is
approximately 1171ms. A similar case is the 1MB mark for
experiments B and C, as the slowdown per operation performed,
is 2432ms — roughly double the additional time introduced at
the 500KB mark. These results indicate a saturation point in
the SEcube being reached. Therefore, the practicality of the RV-
TEE setup becomes scenario-specific beyond this point. As an
example, consider the use case of a disk backup of a Windows
10 machine. If the machine to backup has 32GB of storage
space, as per Windows 10 system requirements20, the transfer
would take an additional 22 hours to complete, assuming the
performance overhead increases with the same rate. Nonethe-
less, the acceptable boundary for this use case depends on the
backups’ frequency and the number of machines involved, e.g.,
it might be overkill for a weekly backup but acceptable for a
monthly one. In the case of command execution and Docker
container log fetching, a delay of a couple of seconds should
not pose much of an issue; especially as the message requesting
some operation to be performed is not delayed (only the re-
sponse from the SSH server after completion of such operation
is delayed).

From experiment D, it can be seen that even though the
slowdown caused by the RV-TEE setup is higher than other
experiments, the baseline values of the experiment also increase
at a high rate. Thus, the slowdown is constantly around 1161ms
when loading web pages, across all tested web page sizes, and
when using the RV-TEE setup. Slow-loading websites are a
major frustration and turnoff for web surfers (“Website design:
Viewing the web as a cognitive landscape” 2004). The accept-
ability of a 1161ms slowdown, once again, is app specific. In
the case of highly security-sensitive web forums used by gov-
ernment agencies, a downgrade in the user experience may well

20 https://www.microsoft.com/en-us/windows/windows-10-specifications

RV-TEE-Based Trustworthy Secure Shell Deployment: An Empirical Evaluation 11

https://www.microsoft.com/en-us/windows/windows-10-specifications


Table 4 Average memory overhead percentage of all use
cases using all configurations of the RV-TEE setup

Command execution (A)

128B 1KB 500KB

Baseline 60.045 59.851 65.945

RV inst. 2.72% (61.677) 3.51% (61.949) 0.89% (66.530)

SEcube 12.77% (67.711) 12.86% (67.547) 9.52% (72.226)

RV-TEE 12.69% (67.664) 12.89% (67.567) 8.96% (71.853)

Secure file transfer (B)

128B 1KB 1MB

Baseline 62.415 65.290 62.783

RV inst. -0.06% (62.377) -0.06% (65.248) 2.55% (64.382)

SEcube 9.07% (68.076) 3.94% (67.864) 8.84% (68.332)

RV-TEE 9.16% (68.129) 4.29% (68.092) 10.10% (69.127)

Docker (C)

128B 1KB 1MB

Baseline 60.949 61.220 70.753

RV inst. 1.02% (61.568) 0.23% (61.363) 0.47% (71.084)

SEcube 11.52% (67.972) 13.27% (69.342) 0.45% (71.070)

RV-TEE 12.75% (68.722) 13.20% (69.300) 2.23% (72.327)

SSH tunnel (D)

32KB 1.73MB 18.2MB

Baseline 67.757 70.258 77.261

RV inst. 0.06% (67.800) 0.45% (70.578) 6.73% (82.461)

SEcube 2.05% (69.149) 2.05% (71.701) 6.67% (82.417)

RV-TEE 2.16% (69.221) 2.33% (71.896) 16.97% (90.369)

be the acceptable price to pay for the additional security. In
contrast, a live feed from a security camera can be severely
impacted in case this is being used for situational awareness
purposes. Therefore, an alternative means by which to secure
the live link would have to be sought.

7. Related Work
Runtime verification in Python This is not the first time
Python has been used for runtime verification. VyPR21 is a
tool used for monitoring single-threaded Python applications
with respect to Control-Flow Temporal Logic (CFTL), using
the PyCFTL library for Python. VyPR operates at the abstract
syntax tree (AST) level of the application by modifying the
AST of the functions of interest to add its instrumentation, as
opposed to performing monkey-patching as done in this work.
Monkey-patching requires less technical complexity to imple-
ment; however, it is only applicable to objects and functions
that can be referenced. On the other hand, utilising ASTs for
instrumentation offers more granular control on where to apply
the instrumentation. For example, instrumenting individual if-
statements and loops is a possibility using ASTs. Nonetheless,
monkey-patching proved to be sufficient for the purposes of our
experiments.

An extension to VyPR is VyPR2 (Dawes et al. 2019), which
is a holistic runtime verification framework for web services

21 https://pyvypr.github.io/home/index.html

0.128 0.256 0.512 1 10 100 500

60

65

70

Command response size in KB

A
ve

ra
ge

m
em

or
y

al
lo

ca
te

d
in

M
B

No RV-TEE (baseline)
RV instrumentation
SEcube device
RV-TEE

Figure 9 Average memory overhead measured during com-
mand execution experimentation (A)

Table 5 Average time taken (in milliseconds), to perform
offline runtime verification per experiment execution

Command execution

128B 256B 512B 1KB 10KB 100KB 500KB

2.325 2.321 2.343 2.357 2.332 3.533 8.49

Secure file transfer

128B 256B 512B 1KB 10KB 500KB 1MB

2.904 2.911 2.934 2.949 3.061 7.644 12.539

Docker

128B 256B 512B 1KB 100KB 500KB 1MB

1.248 1.227 1.232 1.246 3.001 9.532 17.75

SSH tunnel

32KB 352KB 928KB 1.73MB 1.88MB 5.41MB 18.2MB

1.777 1.771 1.751 1.797 1.795 2.2 3.325

implemented in Python using Flask. Other notable Python run-
time verification include VeriMan22, which performs dynamic
analysis of temporal properties for smart contracts implemented
in Solidity, and python-monitors23, which supports several spec-
ification languages such as regular expressions and variants
of temporal logic to monitor temporal sequences of Python
applications.

Use of SEcube for secure applications The open-source HSM
device used in this research, the SEcube, has already been used
for applications similar to those chosen for our experiments.
Three such applications are provided by Blu5 being, SElink,
SEfile, and SEkey, which make use of the lower-level SEcube
host-side libraries (Fornero et al. 2020). SElink is an application
that secures network traffic, by means of encryption, originat-

22 https://github.com/VeraBE/VeriMan
23 https://github.com/doganulus/python-monitors

12 Curmi et al.

https://pyvypr.github.io/home/index.html
https://github.com/VeraBE/VeriMan
https://github.com/doganulus/python-monitors


0.128 0.256 0.512 1 10 500 1000

60

65

70

File size in KB

A
ve

ra
ge

m
em

or
y

al
lo

ca
te

d
in

M
B

No RV-TEE (baseline)
RV instrumentation
SEcube device
RV-TEE

Figure 10 Average memory overhead measured during secure
file transfer experimentation (B)

ing from any application irrespective of the application-level
protocol (Fornero et al. 2020). SEfile is used to allow software
applications to work with encrypted files stored on the OS, us-
ing the key storage and management features available from
the host-side libraries; thus, the data being used by software
applications is constantly encrypted on disk. SEkey is a simple
key management system (KMS) offering a set of APIs that al-
low the creation and distribution of cryptographic keys to other
SEcube devices. Other SEcube applications requiring elevated
levels of dependability have also been reported in the domains of
military-grade solutions24 and small satellite communication25.
However, there are no openly-available experiment results as-
sociated with them. The SEcube has also been extensively
explored for secure execution of other cryptographic protocols
as elaborated next.

Securing communication protocols through RV The applica-
tion of RV to secure communication protocol is far from new
with several works (Bauer & Jürjens 2010; Zhang et al. 2016;
Selyunin et al. 2017; Shi et al. 2018) focusing on particular pro-
tocols, or even a more general black box approach applicable
to any formally specified protocol (Morio et al. 2020). What
is common for all these proposals is that used on their own,
they tackle the issue of bridging the gap between the protocol
design and implementation. However, this is just one way in
which a protocol execution can go wrong; data leak and breach
attack models originating from malware attacks are not covered.
The RV-TEE framework is more comprehensive in that further
to ensuring adherence to specification properties, RV is used
within the wider context of a TEE aiming for enhanced pro-
tection against a wider range of threats, even if the underlying
system contains privileged malware code executing. This work
builds on the previous research on securing the Transport Layer

24 https://www.secube.blu5group.com/why-secube
25 https://timesofmalta.com/articles/view/malta-presents-progress-at-global

-space-convention.702855

0.128 0.256 0.512 1 100 500 1000
60

65

70

75

Docker log size in KB

A
ve

ra
ge

m
em

or
y

al
lo

ca
te

d
in

M
B

No RV-TEE (baseline)
RV instrumentation
SEcube device
RV-TEE

Figure 11 Average memory overhead measured during
Docker experimentation (C)

Security (TLS) (Colombo. & Vella. 2020; Vella et al. 2021), and
a post-quantum group authenticated key exchange (PQ GAKE)
(Abela et al. 2021). When instantiated in the context of TLS,
the SEcube also introduced significant performance overhead,
as the loading time of the Top 100 websites was increased by
approximately 1.723s (Vella et al. 2021); in line with the re-
sults obtained in this research. In the context of PQ-GAKE,
it was discovered that the HSM posed as a bottleneck of the
system (Abela et al. 2021; Colombo. & Vella. 2020; Vella et al.
2021), as the underlying system was slowed down significantly,
especially when transporting large data due to the USB I/O
(Abela et al. 2021). Additionally, the authors mentioned that the
transported data also occupies a large portion of the SEcube’s
memory; thus causing further slowdown (Abela et al. 2021).
Similarly to the results presented in this research, the system
under test fails to operate successfully when under a large load.
However, as opposed to this research, the RV instrumentation
was found to be the main bottleneck of the RV-TEE setup when
instantiated in the context of PQ-GAKE (Abela et al. 2021).

8. Conclusion and Future Work
Even though a protocol design might be proven to be theoret-
ically secure, incorrect protocol implementation and malware
targeting the protocol implementation at runtime might lead to
insecure execution. Both concerns are addressed by adopting
a runtime-verification-enhanced trusted execution environment
(RV-TEE). An RV-TEE is instantiated in the context of the SSH
protocol using Paramiko as the protocol implementation, con-
sisting of runtime verification and an HSM. Runtime verification
is used to bridge the gap between the protocol design and its im-
plementation, raising alarms if any violations are detected. The
HSM, an SEcube chip, provides execution isolation and tamper
resistance to the proposed TEE, as security-critical code, in this
case, cryptographic functions, are provided and executed by the
HSM. Offline runtime verification has been adopted to keep

RV-TEE-Based Trustworthy Secure Shell Deployment: An Empirical Evaluation 13

https://www.secube.blu5group.com/why-secube
https://timesofmalta.com/articles/view/malta-presents-progress-at-global-space-convention.702855
https://timesofmalta.com/articles/view/malta-presents-progress-at-global-space-convention.702855


0.032 0.352 0.982 1.73 1.88 5.41 18.2

70

75

80

85

90

Web page size in MB

A
ve

ra
ge

m
em

or
y

al
lo

ca
te

d
in

M
B

No RV-TEE (baseline)
RV instrumentation
SEcube device
RV-TEE

Figure 12 Average memory overhead measured during SSH
tunnel experimentation (D)

overheads as low as possible. However, the RV-TEE setup must
introduce performance and memory overhead as the protocol
implementation still requires instrumentation and cryptographic
operations are performed by the HSM via USB 2.0 I/O commu-
nication. The performance and memory overhead introduced
by the RV-TEE setup were analysed by performing four ex-
periments, each targeting a specific application of the protocol
implementation. Although the overall performance cost is sub-
stantial — particularly due to the computation-heavy operations
carried out on the HSM — from a usability point-of-view, the
slowdown could be acceptable in many practical applications
of use cases A and C, i.e., command execution and Docker
container log fetching. In the case of file transfer(B) and SSH
tunneling (D), again it depends on the context: the proposed
approach is definitely not feasible in the case of time-critical
applications.

An analysis of the protocol implementation in terms of com-
pliance with the protocol specification was also performed.
Eighteen properties were systematically derived from the proto-
col’s RFC documents using a keyword lookup and extraction
tool. On the chosen protocol implementation, seventeen out of
the eighteen properties could be monitored, with two properties
found to have been violated.

Our next step is to deploy online RV consisting of syn-
chronous and asynchronous modes, and extend our experiment
with other software/hardware configurations. It is still unclear
whether the performance overhead introduced with the utilisa-
tion of the SEcube is caused by the expensive execution of the
cryptographic functions, the USB I/O, as reported in (Abela et
al. 2021), or both. Thus we aim to perform deeper investigation
of the HSM by profiling the hardware device and USB drivers.
Once the origin is located, further action can be taken with the
aim of reducing the incurred performance overhead. For ex-
ample, if the execution of cryptographic operations is the main
contributor to the performance overhead of the SEcube, the on-
chip FPGA offers a speed-up opportunity by implementing the

cryptographic operations directly on the hardware (Vella et al.
2021). However, if the USB I/O is the main contributor to the
performance overhead of the SEcube, an FPGA speed-up would
not contribute much improvement as communication would still
be slowed down by the USB I/O.

The instantiated RV-TEE setup in this research assumes two
key components that have not been implemented in the context
of SSH: the additional information leak low-level monitor and
the remote code attestation component. We expect to incorpo-
rate the low-level monitor for SSH with minimal adaptation
from similar ongoing work on the ECDHE instantiation (Vella
et al. 2021). Regarding the code attestation component, we
plan to employ tamper-evident system logs (Soriano-Salvador
& Guardiola-Múzquiz 2021) to detect escalation of privilege, in
a similar fashion to enclave measurement adopted by SGX26.

Acknowledgments
This work is supported by the NATO Science for Peace and
Security Programme through project G5448 Secure Communi-
cation in the Quantum Era.

References
Abadi, M., & Rogaway, P. (2000). Reconciling two views

of cryptography. In Proceedings of the ifip international
conference on theoretical computer science (pp. 3–22). doi:
10.1007/3-540-44929-9_1

Abela, R., Colombo, C., Malo, P., Sýs, P., Fabšič, T., Gallo, O.,
. . . Vella, M. (2021). Secure implementation of a quantum-
future GAKE protocol. In International workshop on security
and trust management (stm).

Aumasson, J.-P. (2017). Serious Cryptography: A Practical
Introduction to Modern Encryption. No Starch Press.

Bartocci, E., Falcone, Y., Francalanza, A., & Reger, G. (2018).
Introduction to Runtime Verification. In Lectures on runtime
verification (Vol. 10457, pp. 1–33). Springer International
Publishing.

Bauer, A., & Jürjens, J. (2010). Runtime verification of crypto-
graphic protocols. computers & security, 29(3), 315–330.

Black, P., Gondal, I., & Layton, R. (2018). A survey of similar-
ities in banking malware behaviours. computers & security,
77, 756-772. Retrieved from https://www.sciencedirect.com/
science/article/pii/S016740481730202X doi: https://doi.org/
10.1016/j.cose.2017.09.013

Brasser, F., Müller, U., Dmitrienko, A., Kostiainen, K., Cap-
kun, S., & Sadeghi, A.-R. (2017). Software grand
exposure:{SGX} cache attacks are practical. In 11th
{USENIX} workshop on offensive technologies.

Colombo, C., Pace, G. J., & Schneider, G. (2009a). Dynamic
Event-Based Runtime Monitoring of Real-Time and Contex-
tual Properties. In Formal methods for industrial critical
systems (pp. 135–149). Springer Berlin Heidelberg.

Colombo, C., Pace, G. J., & Schneider, G. (2009b). LARVA —
Safer Monitoring of Real-Time Java Programs (Tool Paper).
In 2009 seventh ieee international conference on software
engineering and formal methods (pp. 33–37). IEEE.

26 https://sgx101.gitbook.io/sgx101/sgx-bootstrap/attestation

14 Curmi et al.

https://www.sciencedirect.com/science/article/pii/S016740481730202X
https://www.sciencedirect.com/science/article/pii/S016740481730202X
https://sgx101.gitbook.io/sgx101/sgx-bootstrap/attestation


Colombo., C., & Vella., M. (2020). Towards a Comprehen-
sive Solution for Secure Cryptographic Protocol Execution
based on Runtime Verification. In Proceedings of the 6th
international conference on information systems security and
privacy - volume 1: Forse, (pp. 765–774). SciTePress. doi:
10.5220/0008851507650774

Dawes, J. H., Reger, G., Franzoni, G., Pfeiffer, A., & Govi,
G. (2019). Vypr2: a framework for runtime verification of
python web services. In International conference on tools
and algorithms for the construction and analysis of systems
(pp. 98–114).

Fornero, M., Maunero, N., Prinetto, P., Roascio, G., & Varri-
ale, A. (2020). SEcube open security platform [Computer
software manual].

Kaplan, D., Powell, J., & Woller, T. (2016). Amd memory
encryption. White paper.

The majestic million. (n.d.). https://majestic.com/reports/
majestic-million.

Matrosov, A., & Rodionov, E. (2011). Defeating x64: Modern
trends of kernel-mode rootkits.

McKeen, F., Alexandrovich, I., Anati, I., Caspi, D., Johnson, S.,
Leslie-Hurd, R., & Rozas, C. (2016). Intel® software guard
extensions (intel® sgx) support for dynamic memory man-
agement inside an enclave. In Proceedings of the hardware
and architectural support for security and privacy 2016 (pp.
1–9).

Meier, S., Schmidt, B., Cremers, C., & Basin, D. (2013). The
tamarin prover for the symbolic analysis of security protocols.
In International conference on computer aided verification
(pp. 696–701). doi: 10.1007/978-3-642-39799-8_48

Morio, K., Jackson, D., Vassena, M., & Künnemann, R. (2020,
October). Modular black-box runtime verification of security
protocols. In Plas 2020. Retrieved from https://publications
.cispa.saarland/3309/

Pinto, S., & Santos, N. (2019). Demystifying Arm trustzone:
A comprehensive survey. ACM Computing Surveys (CSUR),
51(6), 1–36. doi: 10.1145/3291047

Sabt, M., Achemlal, M., & Bouabdallah, A. (2015). Trusted
execution environment: what it is, and what it is not. In 2015
ieee trustcom/bigdatase/ispa (Vol. 1, pp. 57–64). IEEE.

Selyunin, K., Jaksic, S., Nguyen, T., Reidl, C., Hafner, U.,
Bartocci, E., . . . Grosu, R. (2017). Runtime monitoring with
recovery of the SENT communication protocol. In Computer
aided verification - 29th international conference, CAV (pp.
336–355).

Shi, J., Lahiri, S., Chandra, R., & Challen, G. (2018). Verifi:
Model-driven runtime verification framework for wireless
protocol implementations. CoRR, abs/1808.03406. Retrieved
from http://arxiv.org/abs/1808.03406

Soriano-Salvador, E., & Guardiola-Múzquiz, G. (2021). Sealfs:
Storage-based tamper-evident logging. Computers Security,
108, 102325. Retrieved from https://www.sciencedirect.com/
science/article/pii/S0167404821001498 doi: https://doi.org/
10.1016/j.cose.2021.102325

Vella, M., Colombo, C., Abela, R., & Špaček, P. (2021). Rv-tee:
secure cryptographic protocol execution based on runtime
verification. Journal of Computer Virology and Hacking

Techniques, 1–20.
Website design: Viewing the web as a cognitive landscape.

(2004). Journal of Business Research, 57(7), 787-794. Re-
trieved from https://www.sciencedirect.com/science/article/
pii/S0148296302003533 doi: https://doi.org/10.1016/S0148
-2963(02)00353-3

Ylonen, T., & Lonvick, C. (2006a, January). The secure shell
(SSH) authentication protocol (RFC No. 4252). IETF.

Ylonen, T., & Lonvick, C. (2006b, January). The secure shell
(SSH) connection protocol (RFC No. 4254). IETF.

Ylonen, T., & Lonvick, C. (2006c, January). The secure shell
(SSH) protocol architecture (RFC No. 4251). IETF.

Ylonen, T., & Lonvick, C. (2006d, January). The secure shell
(SSH) transport layer protocol (RFC No. 4253). IETF.

Zhang, X., Feng, W., Wang, J., & Wang, Z. (2016, Aug). Defens-
ing the malicious attacks of vehicular network in runtime ver-
ification perspective. In 2016 ieee international conference
on electronic information and communication technology
(iceict) (p. 126-133). doi: 10.1109/ICEICT.2016.7879666

About the authors
Axel Curmi is a postgraduate student at the University
of Malta (Malta). You can contact the author at
axel.curmi.20@um.edu.mt.

Christian Colombo is a senior lecturer at the University
of Malta (Malta). You can contact the author at chris-
tian.colombo@um.edu.mt.

Mark Vella is a senior lecturer at the University of Malta (Malta).
You can contact the author at mark.vella@um.edu.mt.

RV-TEE-Based Trustworthy Secure Shell Deployment: An Empirical Evaluation 15

https://majestic.com/reports/majestic-million
https://majestic.com/reports/majestic-million
https://publications.cispa.saarland/3309/
https://publications.cispa.saarland/3309/
http://arxiv.org/abs/1808.03406
https://www.sciencedirect.com/science/article/pii/S0167404821001498
https://www.sciencedirect.com/science/article/pii/S0167404821001498
https://www.sciencedirect.com/science/article/pii/S0148296302003533
https://www.sciencedirect.com/science/article/pii/S0148296302003533
mailto:axel.curmi.20@um.edu.mt?subject=Your paper "RV-TEE-Based Trustworthy Secure Shell Deployment: An Empirical Evaluation"
mailto:christian.colombo@um.edu.mt?subject=Your paper "RV-TEE-Based Trustworthy Secure Shell Deployment: An Empirical Evaluation"
mailto:christian.colombo@um.edu.mt?subject=Your paper "RV-TEE-Based Trustworthy Secure Shell Deployment: An Empirical Evaluation"
mailto:mark.vella@um.edu.mt?subject=Your paper "RV-TEE-Based Trustworthy Secure Shell Deployment: An Empirical Evaluation"

